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Combinatorial surface

A combinatorial surface is a graph G = (V ,E ) cellularly embedded on a
topological orientable compact surface S of genus g .
n is the number of vertices, e the number of edges and f the number of faces.
n − e + f = 2− 2g .
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Homotopy

Two closed loop γ and γ′ on a surface are homotopic if one can be continuously
deformed into the other.

π1(S , v) : group of loops based at v under homotopy

LS : set of loops under free homotopy

On a combinatorial surface, homotopy is the closure of the following relation on
faces :
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Length spectrum

The length spectrum is the function µG :
LS → N
γ 7→ inf

γ′∼γ
cr(γ,G )

If H is a minor of G then µH ⩽ µG .
A kernel is an embedded graph G such that all proper minors H of G satisfy
µH < µG .
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Computing µG

c closed curve of length ℓ

Theorem (Colin de Verdière and Erickson, 2010)

Assume g ⩾ 2.
After O(gn log(gn)) time preprocessing, µG ([c]) can be computed in time
O(gnℓ log(nℓ)).

Theorem (Delecroix, Ebbens, Lazarus, Yakovlev, 2024)

Assume g = 1.
After O(n2 log log n) time preprocessing, µG ([c]) can be computed in time
O(ℓ+ log n).

Theorem (Despré, Lazarus 2019 and Dubois 2024)

Assume G is a kernel.
µG ([c]) can be computed in time O(g(n + ℓ) log(n + ℓ)).
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Theorem (Despré, Lazarus 2019 and Dubois 2024)

Assume G is a kernel.
µG ([c]) can be computed in time O(g(n + ℓ) log(n + ℓ)).

Oscar Fontaine Minor kernelization of embedded graphs JGA2025 5 / 18



Our result

H is a minor kernel of G if H is a kernel and a minor of G and µH = µG

Theorem (Delecroix, F., Lazarus)

Given a graph G of genus g ⩾ 2, a minor kernel can be computed in O(n3 log n).

Theorem
Assume g ⩾ 2.
After O(n3 log n) time preprocessing, µG ([c]) can be computed in time
O(g(n + ℓ) log(n + ℓ)).
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Medial graph

The medial graph M of G is defined by :

one vertex on the middle of each edges

one edge between the middles of two consecutive edges around each vertex
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System of curves

The medial graph can be interpreted as a system of curves whose vertices are the
transverse intersections of those curves.

Oscar Fontaine Minor kernelization of embedded graphs JGA2025 8 / 18



Universal covering

The universal covering (M̃, p) of M on S is a subdivision of the plane and a
projection such that

each face, edge or vertex of M̃ projects on a face, edge or vertex of M with
same degree

two adjacent faces of M̃ project on two adjacent faces of M

two adjacent vertices of M̃ project on two adjacent vertices
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Bigons and monogons

A bigon is a disk bounded by two lifts of curves in M̃.
A monogon is a disk bounded by a lift of curves in M̃.

An empty monogon is a monogon without incident edges.
A minimal bigon is a bigon with no bigon nor monogon inside it.
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Minimality

Theorem (Schrijver 1992)

G is not a kernel if and only if M contains either a minimal bigon or an empty
monogon.

Moreover in that case a corner of such a bigon or monogon can be smoothed
without changing the length spectrum.
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Length of a minimal bigon

Theorem (Delecroix, F., Lazarus)

Assuming g ⩾ 2, the length of every minimal bigon in M̃ is at most 8n.
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Long bigon
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Sketch of the proof

Goal : bound the number of lifts on one curve.
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π1(S , v) ≃

〈
a1, b1, . . . , ag , bg

∣∣∣∣∣
g∏

i=1

aibia
−1
i b−1

i = e

〉
Look at the subgroup of π1(S , v) generated by τ1 and τ2. It is isomorphic to one
of the following groups :

{1}
Z
F2
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A ping pong lemma

Assume < τ1, τ2 >≃ F2.
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Minimal bigon detection algorithm

Find all bigon of length at most 8n.

Compute the area of all this bigon.

Return the bigon with minimal area.

Finding bigon: homotopy test (Lazarus, Rivaud 2012 ; Erickson, Whittelsey 2013)
Online version to have many tests in efficient time.

Area computation: a Discrete Stokes formula for reduced graph and the
tree/co-tree decomposition
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Conclusion

Algorithm to compute a minor kernel of G :

1 Compute the medial graph M of G

2 Find an empty monogon or a minimal bigon in M

3 Smooth one of its corners and do the corresponding minor operation on G

4 Repeat this operation until there is no monogon nor bigon

This process compute a minor kernel in O(n3 log(n)).
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Perspectives

Length of any bigon ? Number of bigons ?

Number of kernels with a given spectrum ?

Given a spectrum, construct a graph with this spectrum.
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