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R(f) = {v € R+ the chirotope of (v1,...,V441), (Vasa, .., V2ds2),
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f is realizable < R(f) # () Realizable chirotopes
are hard to

Theorem. [Mnév'88] For every semi-algebraic set S, there

> count,
exists n and f : [n]> — {—1,0,1} such that R(f) ~ S...

> enumerate,

, > sample,
Theorem. [Shor'91] ... and f can be computed from the s
representation of S in polynomial time. o
What if we add information ? ° ° ® ® ° °
allowable sequences, CCC systems, sweep =~ =
oriented matroids, adjoints of oriented matroids, o) ©
() o o @

strong geometries, . ..
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Realization spaces mess with extensions...

N points In convex position.
©(n*) extensions with distinct chirotope.

But the chirotope " convex position”
has ©(2" /n) l-element extensions...

So we want to understand the
extension vs realization relation better...
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def
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> Geometrically... Aa(P, Q) = minge 4, Max;ex ||pi — ¢(q:)]/2

A, the direct affine transforms of R?.

> Combinatorially... dc(P, Q) = min{k € N: P £ Q}

Theorem. For d > 2 and every full-dimensional point configuration P € (R%)* there
exists constants C'(P) and 7(P) > 0 such that for every 0 < € < 7(P), there exists a

finite generic extension P of P, with P \ P of size at most C'(P)log < such that
every @ € (R%)* on top of which x5 can be realized satisfies Ag(P, Q) < .

dc(P, Q) controls Aq(P, Q). A single extension of P suffices...
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from R to RP* . 5w .
0 1 |
O & & O
. 1 0
O 3 & O
o o—o—>
VRN 0
b(q,-) b(p.-)
g—
w(q) g+w(p)
W(!‘})"" UJ((IJ 2 g— W )g_l—-—*w(f}) 'u.’(p)"-— g+ wgg) 2 .qo—___)_w(p)
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0 1
from R to RP* . 5w
0 1
O i i
: 1 0
O O &
= \1;:—:0\—>
b(q, )
(@)=~ - wig) g ) (o)

Separate e and e by two points.
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0 1
from R to RP* . 5w .
0 1
O i i O
. 1 0
O = i O
= \1;:—\0\—>
AT 0
b(q,-)
g—
w(q) g+w(p)
w(g)=<- wla) 2 gm-—rm(q) w(p)=<--

Separate e and e by two points. Construct these points (Von Staudt).
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0 1 0
from R to RP* . 5 = .
0 1 1
O O O O
. 1 0
O o 0 O
= \1;:—\0\—>
YRR 0
b(q,-) b(p,-)
g_
w(q) g+w(p)
w(g)=- - wlg) 9 gsﬁﬂé}i--w(q) w(p)=<- - % “@ g I w(p)

Separate ¢ and e by two points. Construct these points (Von Staudt).  Analyze wrt ...
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Many open questions...



Suppose we refine the notion of chirotope to account for the possible k-point extensions.
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