An asymptotic rigidity property of chirotope extensions

Xavier Goaoc - Université de Lorraine

Arnau Padrol - Universitat de Barcelona

Geometric object \leadsto Combinatorial object

Geometric object → Combinatorial object

$$P = \{p_i\}_{i \in X} \in (\mathbb{R}^d)^X$$

Geometric object \simples Combinatorial object

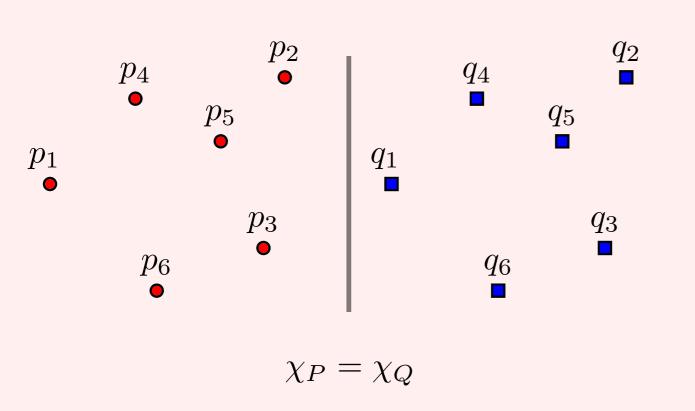
$$P = \{p_i\}_{i \in X} \in (\mathbb{R}^d)^X \quad \mapsto \quad \chi_P : \begin{cases} X^{d+1} & \to & \{-1, 0, +1\} \\ (i_1, i_2, \dots, i_{d+1}) & \mapsto & \operatorname{sign} \begin{vmatrix} p_{i_1} & p_{i_2} & \dots & p_{i_{d+1}} \\ 1 & 1 & \dots & 1 \end{vmatrix} \end{cases}$$

Geometric object \simples Combinatorial object

$$P = \{p_i\}_{i \in X} \in (\mathbb{R}^d)^X \quad \mapsto \quad \chi_P : \begin{cases} X^{d+1} & \to & \{-1, 0, +1\} \\ (i_1, i_2, \dots, i_{d+1}) & \mapsto & \operatorname{sign} \begin{vmatrix} p_{i_1} & p_{i_2} & \dots & p_{i_{d+1}} \\ 1 & 1 & \dots & 1 \end{vmatrix} \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 & q_4 & q_1 & q_6 & q_3 & q_2 & q_5 \end{cases}$$

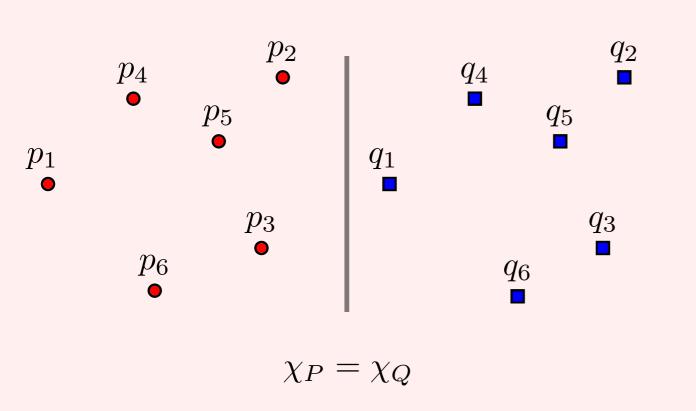
Geometric object \iff Combinatorial object

$$P = \{p_i\}_{i \in X} \in (\mathbb{R}^d)^X \quad \mapsto \quad \chi_P : \begin{cases} X^{d+1} & \to & \{-1, 0, +1\} \\ (i_1, i_2, \dots, i_{d+1}) & \mapsto & \operatorname{sign} \begin{vmatrix} p_{i_1} & p_{i_2} & \dots & p_{i_{d+1}} \\ 1 & 1 & \dots & 1 \end{vmatrix} \\ p_4 & p_1 & p_6 & p_3 & p_2 & p_5 \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 \\ \hline p_5 & p_6 & p_6 & p_6 & p_6 & p_6 \\ \hline p_6 & p_7 & p_8 & p_8 & p_8 & p_8 \\ \hline p_7 & p_8 & p_8 & p_8 & p_8 & p_8 \\ \hline p_8 & p_8 & p_8 & p_8 & p_8 & p_8 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9$$



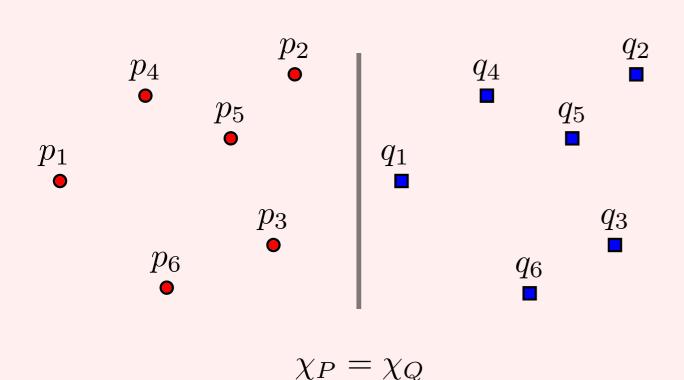
Geometric object \iff Combinatorial object

$$P = \{p_i\}_{i \in X} \in (\mathbb{R}^d)^X \quad \mapsto \quad \chi_P : \begin{cases} X^{d+1} & \to & \{-1, 0, +1\} \\ (i_1, i_2, \dots, i_{d+1}) & \mapsto & \operatorname{sign} \begin{vmatrix} p_{i_1} & p_{i_2} & \dots & p_{i_{d+1}} \\ 1 & 1 & \dots & 1 \end{vmatrix} \\ p_4 & p_1 & p_6 & p_3 & p_2 & p_5 \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 \\ \hline p_5 & p_6 & p_6 & p_6 & p_6 & p_6 \\ \hline p_6 & p_7 & p_8 & p_8 & p_8 & p_8 \\ \hline p_7 & p_8 & p_8 & p_8 & p_8 & p_8 \\ \hline p_8 & p_8 & p_8 & p_8 & p_8 & p_8 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 \\ \hline p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 \\ \hline p_9 & p_9 \\ \hline p_9 & p_9 & p_9 & p_9 & p_9 & p_9 & p_9 \\ \hline p_9 & p_9 & p_9 &$$



Geometric object \iff Combinatorial object

$$P = \{p_i\}_{i \in X} \in (\mathbb{R}^d)^X \quad \mapsto \quad \chi_P : \begin{cases} X^{d+1} & \to & \{-1, 0, +1\} \\ (i_1, i_2, \dots, i_{d+1}) & \mapsto & \operatorname{sign} \begin{vmatrix} p_{i_1} & p_{i_2} & \dots & p_{i_{d+1}} \\ 1 & 1 & \dots & 1 \end{vmatrix} \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 & q_4 & q_1 & q_6 & q_3 & q_2 & q_5 \\ \hline \end{pmatrix}$$

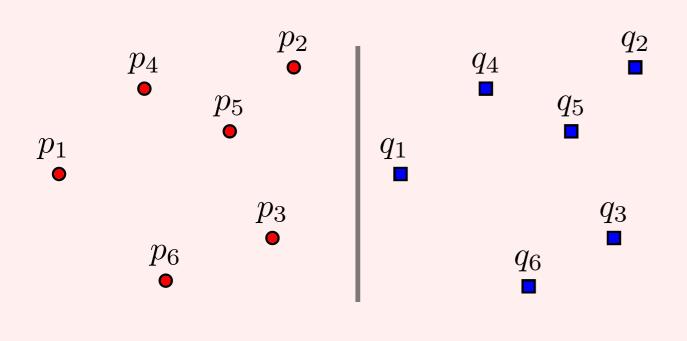


Chirotopes of uniform oriented matroids.

Geometric object \simples Combinatorial object

$$P = \{p_i\}_{i \in X} \in (\mathbb{R}^d)^X \quad \mapsto \quad \chi_P : \begin{cases} X^{d+1} & \to & \{-1, 0, +1\} \\ (i_1, i_2, \dots, i_{d+1}) & \mapsto & \operatorname{sign} \begin{vmatrix} p_{i_1} & p_{i_2} & \dots & p_{i_{d+1}} \\ 1 & 1 & \dots & 1 \end{vmatrix} \end{cases}$$

$$p_4 \quad p_1 \quad p_6 \qquad p_3 \quad p_2 \quad p_5 \qquad q_4 \qquad q_1 \quad q_6 \quad q_3 \qquad q_2 \qquad q_5$$



 $\chi_P = \chi_Q$

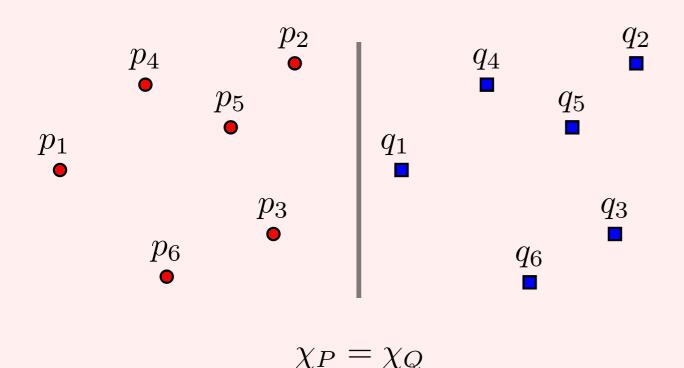
Chirotopes of uniform oriented matroids.

Model many (geometric) structures.

acyclic orientations of a graph, vector configurations, point configurations, hyperplane arrangements, pseudoline arrangements, . . .

Geometric object \simples Combinatorial object

$$P = \{p_i\}_{i \in X} \in (\mathbb{R}^d)^X \quad \mapsto \quad \chi_P : \begin{cases} X^{d+1} & \to & \{-1, 0, +1\} \\ (i_1, i_2, \dots, i_{d+1}) & \mapsto & \operatorname{sign} \begin{vmatrix} p_{i_1} & p_{i_2} & \dots & p_{i_{d+1}} \\ 1 & 1 & \dots & 1 \end{vmatrix} \\ \hline p_4 & p_1 & p_6 & p_3 & p_2 & p_5 & q_4 & q_1 & q_6 & q_3 & q_2 & q_5 \end{cases}$$



Chirotopes of uniform oriented matroids.

Model many (geometric) structures.

acyclic orientations of a graph, vector configurations, point configurations, hyperplane arrangements, pseudoline arrangements, . . .

Discovered and re-discovered.

[Bland 1974] [Las Vergnas 1975] [Folkman-Lauwrence 1978] [Goodman-Pollack 1983] [Knuth 1992]

f is **realizable** $\Leftrightarrow R(f) \neq \emptyset$

f is realizable $\Leftrightarrow R(f) \neq \emptyset$

Theorem. [Mnëv'88] For every semi-algebraic set S, there exists n and $f:[n]^3 \to \{-1,0,1\}$ such that $R(f) \simeq S...$

f is realizable $\Leftrightarrow R(f) \neq \emptyset$

Theorem. [Mnëv'88] For every semi-algebraic set S, there exists n and $f:[n]^3 \to \{-1,0,1\}$ such that $R(f) \simeq S...$

Theorem. [Shor'91] ... and f can be computed from the representation of S in polynomial time.

f is realizable $\Leftrightarrow R(f) \neq \emptyset$

Theorem. [Mnëv'88] For every semi-algebraic set S, there exists n and $f:[n]^3 \to \{-1,0,1\}$ such that $R(f) \simeq S...$

Theorem. [Shor'91] ... and f can be computed from the representation of S in polynomial time.

Realizable chirotopes are hard to

- ▷ enumerate,
- ▷ sample,
- ▷ ...

f is realizable $\Leftrightarrow R(f) \neq \emptyset$

Theorem. [Mnëv'88] For every semi-algebraic set S, there exists n and $f:[n]^3 \to \{-1,0,1\}$ such that $R(f) \simeq S...$

Theorem. [Shor'91] ... and f can be computed from the representation of S in polynomial time.

Realizable chirotopes are hard to

▷ enumerate,

▷ sample,

▷ ...

What if we add information?

f is **realizable** $\Leftrightarrow R(f) \neq \emptyset$

Theorem. [Mnëv'88] For every semi-algebraic set S, there exists n and $f:[n]^3 \to \{-1,0,1\}$ such that $R(f) \simeq S...$

Theorem. [Shor'91] ... and f can be computed from the representation of S in polynomial time.

Realizable chirotopes are hard to

- ▷ enumerate,
- ▷ sample,
- ▷ . . .

What if we add information?

f is **realizable** $\Leftrightarrow R(f) \neq \emptyset$

Theorem. [Mnëv'88] For every semi-algebraic set S, there exists n and $f:[n]^3 \to \{-1,0,1\}$ such that $R(f) \simeq S...$

Theorem. [Shor'91] ... and f can be computed from the representation of S in polynomial time.

Realizable chirotopes are hard to

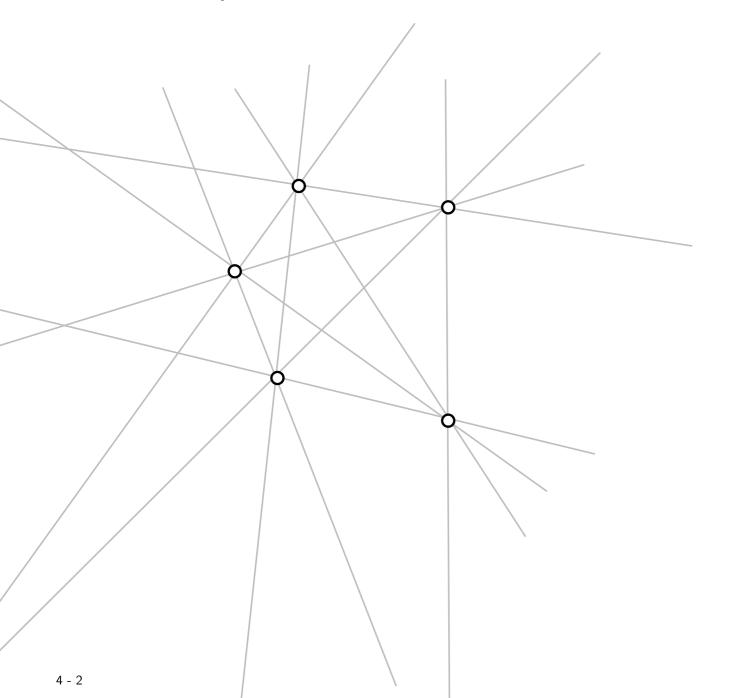
- ▷ enumerate,
- ▷ sample,
- ▷ . . .

What if we add information?

allowable sequences, CCC systems, sweep oriented matroids, adjoints of oriented matroids, strong geometries, . . .

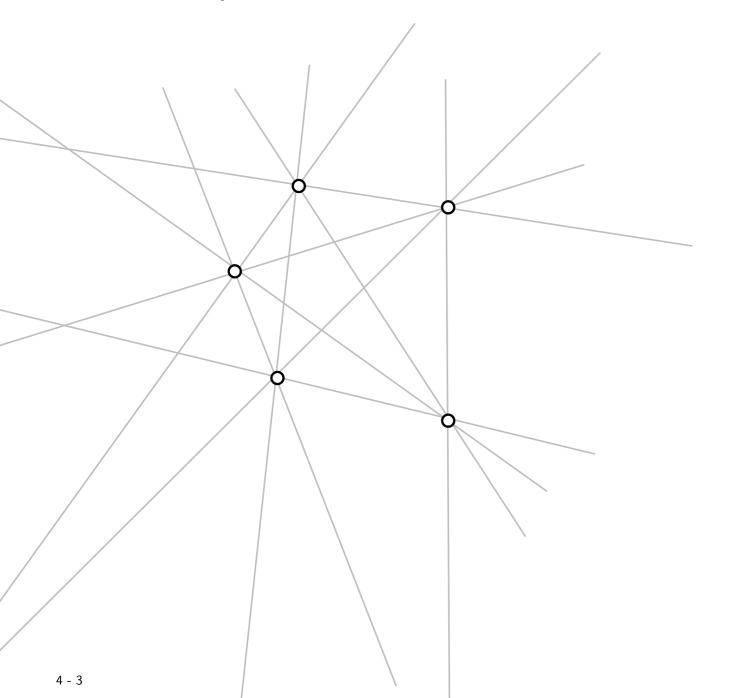
n points in convex position.

0



n points in convex position.

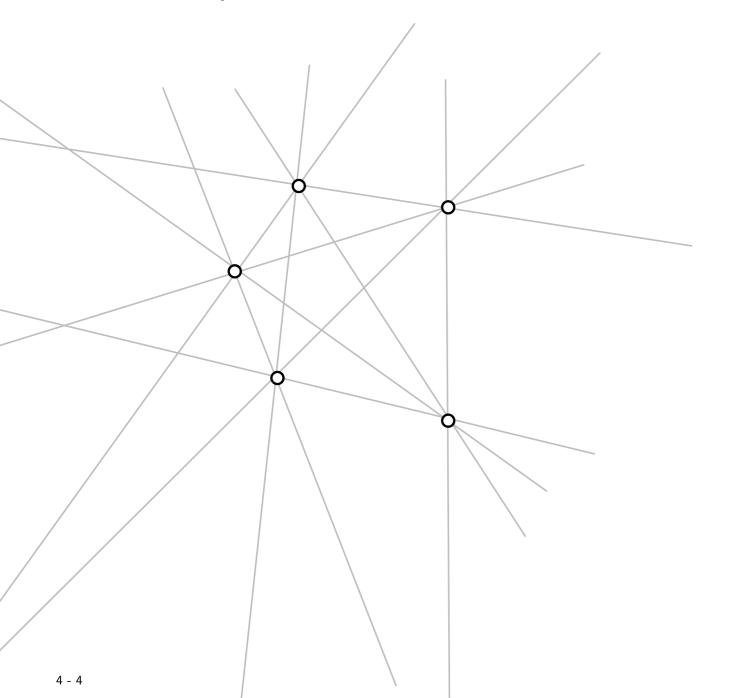
 $\Theta(n^4)$ extensions with distinct chirotope.



n points in convex position.

 $\Theta(n^4)$ extensions with distinct chirotope.

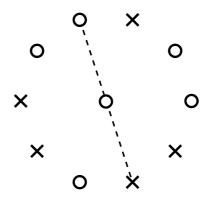
But the chirotope "convex position" has $\Theta(2^n/n)$ 1-element extensions...

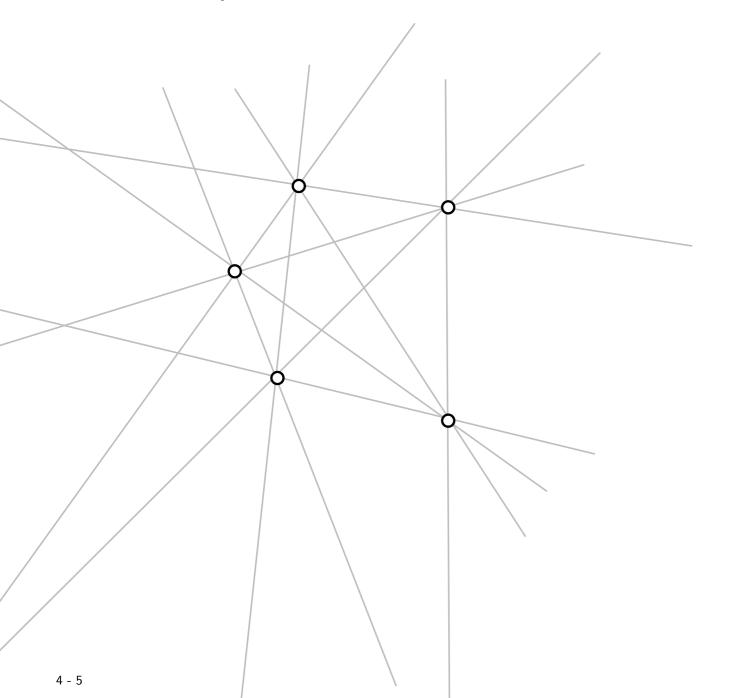


n points in convex position.

 $\Theta(n^4)$ extensions with distinct chirotope.

But the chirotope "convex position" has $\Theta(2^n/n)$ 1-element extensions...

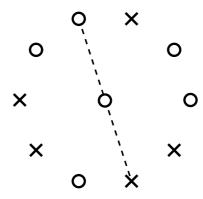




n points in convex position.

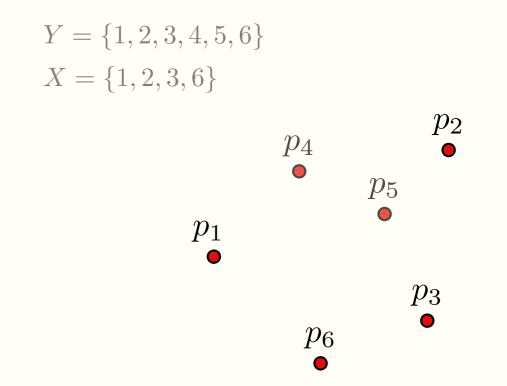
 $\Theta(n^4)$ extensions with distinct chirotope.

But the chirotope "convex position" has $\Theta(2^n/n)$ 1-element extensions...



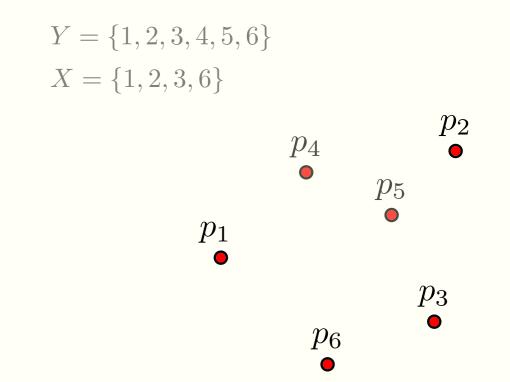
So we want to understand the extension vs realization relation better...

 $X \subseteq Y$ are finite (label) sets and $P \in (\mathbb{R}^d)^Y$.



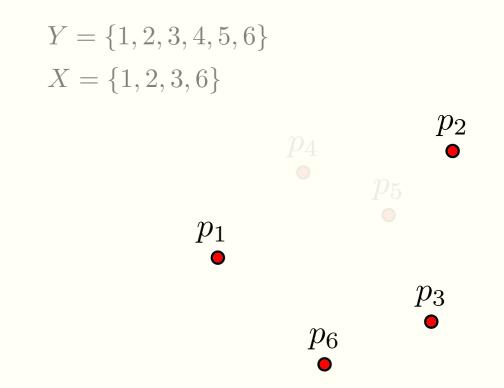
 $X \subseteq Y$ are finite (label) sets and $P \in (\mathbb{R}^d)^Y$.

The restriction of $P \in (\mathbb{R}^d)^Y$ to X is $P_{|X} \stackrel{\text{def}}{=} \{p_i\}_{i \in X}$.



 $X \subseteq Y$ are finite (label) sets and $P \in (\mathbb{R}^d)^Y$.

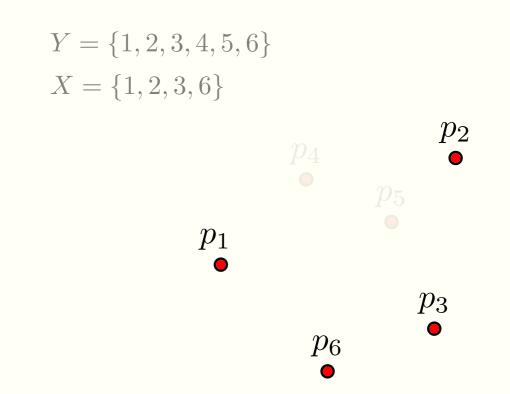
The restriction of $P \in (\mathbb{R}^d)^Y$ to X is $P_{|X} \stackrel{\text{def}}{=} \{p_i\}_{i \in X}$.



$$X \subseteq Y$$
 are finite (label) sets and $P \in (\mathbb{R}^d)^Y$.

The restriction of $P \in (\mathbb{R}^d)^Y$ to X is $P_{|X} \stackrel{\text{def}}{=} \{p_i\}_{i \in X}$.

$$P \in (\mathbb{R}^d)^Y$$
 extends $Q \in (\mathbb{R}^d)^X$ if $P_{|X} = Q$.

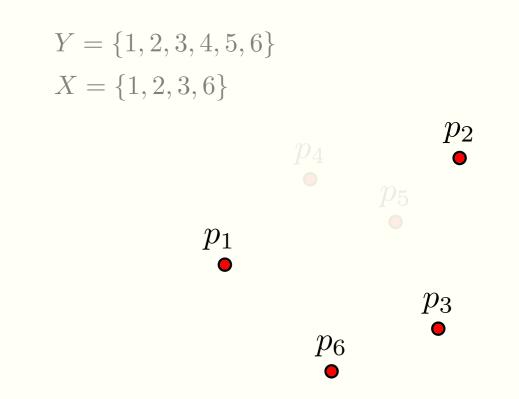


$$X \subseteq Y$$
 are finite (label) sets and $P \in (\mathbb{R}^d)^Y$.

The restriction of $P \in (\mathbb{R}^d)^Y$ to X is $P_{|X} \stackrel{\text{def}}{=} \{p_i\}_{i \in X}$.

$$P \in (\mathbb{R}^d)^Y$$
 extends $Q \in (\mathbb{R}^d)^X$ if $P_{|X} = Q$.

A chirotope χ is **realizable on top of** $P \in (\mathbb{R}^d)^X$ if there exists an extension of P realizing χ .



$$X \subseteq Y$$
 are finite (label) sets and $P \in (\mathbb{R}^d)^Y$.

$$Y = \{1, 2, 3, 4, 5, 6\}$$
$$X = \{1, 2, 3, 6\}$$

The restriction of
$$P \in (\mathbb{R}^d)^Y$$
 to X is $P_{|X} \stackrel{\text{def}}{=} \{p_i\}_{i \in X}$.

$$p_4$$

$$P \in (\mathbb{R}^d)^Y \text{ extends } Q \in (\mathbb{R}^d)^X \text{ if } P_{|X} = Q.$$

A chirotope χ is **realizable on top of** $P \in (\mathbb{R}^d)^X$ if there exists an extension of P realizing χ .

 p_6

Theorem. For $d \geq 2$, two full-dimensional point configurations $P, Q \in (\mathbb{R}^d)^X$ are directly affinely equivalent if and only if for every (generic) extension \hat{P} of P, the chirotope of \hat{P} is realizable on top of Q.

$$X \subseteq Y$$
 are finite (label) sets and $P \in (\mathbb{R}^d)^Y$.

$$Y = \{1, 2, 3, 4, 5, 6\}$$
$$X = \{1, 2, 3, 6\}$$

The restriction of $P \in (\mathbb{R}^d)^Y$ to X is $P_{|X} \stackrel{\text{def}}{=} \{p_i\}_{i \in X}$.

$$p_4 \qquad p_5 \qquad p_2$$

$$P \in (\mathbb{R}^d)^Y \text{ extends } Q \in (\mathbb{R}^d)^X \text{ if } P_{|X} = Q.$$

$$p_1$$

A chirotope χ is **realizable on top of** $P \in (\mathbb{R}^d)^X$ if there exists an extension of P realizing χ .

Theorem. For $d \geq 2$, two full-dimensional point configurations $P, Q \in (\mathbb{R}^d)^X$ are directly affinely equivalent if and only if for every (generic) extension \hat{P} of P, the chirotope of \hat{P} is realizable on top of Q.

 $P \prec_k Q \Leftrightarrow$ the chirotope of every (generic) extension of P by k points is realizable on top of Q.

$$X \subseteq Y$$
 are finite (label) sets and $P \in (\mathbb{R}^d)^Y$.

$$Y = \{1, 2, 3, 4, 5, 6\}$$
$$X = \{1, 2, 3, 6\}$$

The restriction of $P \in (\mathbb{R}^d)^Y$ to X is $P_{|X} \stackrel{\text{def}}{=} \{p_i\}_{i \in X}$.

*p*₂ ●

 $P \in (\mathbb{R}^d)^Y$ extends $Q \in (\mathbb{R}^d)^X$ if $P_{|X} = Q$.

 p_1

A chirotope χ is **realizable on top of** $P \in (\mathbb{R}^d)^X$ if there exists an extension of P realizing χ .

Theorem. For $d \geq 2$, two full-dimensional point configurations $P, Q \in (\mathbb{R}^d)^X$ are directly affinely equivalent if and only if for every (generic) extension \hat{P} of P, the chirotope of \hat{P} is realizable on top of Q.

 $P \prec_k Q \Leftrightarrow \text{the chirotope of every (generic) extension of } P \text{ by } k \text{ points is realizable on top of } Q.$

$$R_k(P) \stackrel{\text{def}}{=} \{Q \subset \mathbb{R}^d \colon P \prec_k Q\}.$$

$$X \subseteq Y$$
 are finite (label) sets and $P \in (\mathbb{R}^d)^Y$.

$$Y = \{1, 2, 3, 4, 5, 6\}$$
$$X = \{1, 2, 3, 6\}$$

The restriction of
$$P \in (\mathbb{R}^d)^Y$$
 to X is $P_{|X} \stackrel{\text{def}}{=} \{p_i\}_{i \in X}$.

$$p_4 \qquad p_2 \\ p_5 \qquad p_5$$

$$P \in (\mathbb{R}^d)^Y$$
 extends $Q \in (\mathbb{R}^d)^X$ if $P_{|X} = Q$.

$$p_1$$

A chirotope χ is **realizable on top of** $P \in (\mathbb{R}^d)^X$ if there exists an extension of P realizing χ .

Theorem. For $d \geq 2$, two full-dimensional point configurations $P, Q \in (\mathbb{R}^d)^X$ are directly affinely equivalent if and only if for every (generic) extension \hat{P} of P, the chirotope of \hat{P} is realizable on top of Q.

 $P \prec_k Q \Leftrightarrow$ the chirotope of every (generic) extension of P by k points is realizable on top of Q.

$$R_k(P) \stackrel{\text{def}}{=} \{Q \subset \mathbb{R}^d \colon P \prec_k Q\}.$$

 $R_0(P)$ is the realization space of the chirotope of P.

$$X \subseteq Y$$
 are finite (label) sets and $P \in (\mathbb{R}^d)^Y$.

$$Y = \{1, 2, 3, 4, 5, 6\}$$

 $X = \{1, 2, 3, 6\}$

The restriction of
$$P \in (\mathbb{R}^d)^Y$$
 to X is $P_{|X} \stackrel{\text{def}}{=} \{p_i\}_{i \in X}$.

$$p_4$$
 p_5

$$P \in (\mathbb{R}^d)^Y \text{ extends } Q \in (\mathbb{R}^d)^X \text{ if } P_{|X} = Q.$$

$$p_1$$

 p_3

A chirotope χ is **realizable on top of** $P \in (\mathbb{R}^d)^X$ if there exists an extension of P realizing χ .

Theorem. For $d \geq 2$, two full-dimensional point configurations $P, Q \in (\mathbb{R}^d)^X$ are directly affinely equivalent if and only if for every (generic) extension \hat{P} of P, the chirotope of \hat{P} is realizable on top of Q.

 $P \prec_k Q \Leftrightarrow$ the chirotope of every (generic) extension of P by k points is realizable on top of Q.

$$R_k(P) \stackrel{\text{def}}{=} \{Q \subset \mathbb{R}^d \colon P \prec_k Q\}.$$

 $R_0(P)$ is the realization space of the chirotope of P.

Mnëv : $R_0(P)$ is arbitrarily complicated.

$$X \subseteq Y$$
 are finite (label) sets and $P \in (\mathbb{R}^d)^Y$.

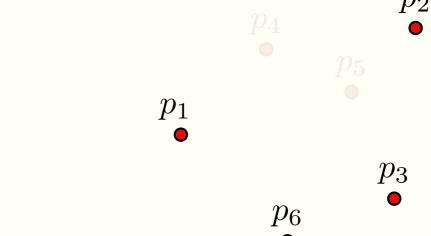
$$Y = \{1, 2, 3, 4, 5, 6\}$$

 $X = \{1, 2, 3, 6\}$

The restriction of $P \in (\mathbb{R}^d)^Y$ to X is $P_{|X} \stackrel{\text{def}}{=} \{p_i\}_{i \in X}$.

$$P \in (\mathbb{R}^d)^Y$$
 extends $Q \in (\mathbb{R}^d)^X$ if $P_{|X} = Q$.

 $P_{|X} = Q.$ of $P \in (\mathbb{R}^d)^X$



A chirotope χ is **realizable on top of** $P \in (\mathbb{R}^d)^X$ if there exists an extension of P realizing χ .

Theorem. For $d \geq 2$, two full-dimensional point configurations $P, Q \in (\mathbb{R}^d)^X$ are directly affinely equivalent if and only if for every (generic) extension \hat{P} of P, the chirotope of \hat{P} is realizable on top of Q.

 $P \prec_k Q \Leftrightarrow$ the chirotope of every (generic) extension of P by k points is realizable on top of Q.

$$R_k(P) \stackrel{\text{def}}{=} \{Q \subset \mathbb{R}^d \colon P \prec_k Q\}.$$

 $R_0(P)$ is the realization space of the chirotope of P.

Mnëv : $R_0(P)$ is arbitrarily complicated.

New : $R_{\infty}(P) \stackrel{\text{def}}{=} \cap_{k>0} R_k(P)$ is simple.

 $P,Q\in(\mathbb{R}^d)^X.$ We can measure how far P and Q are from being directly affinely equivalent...

 $P,Q\in(\mathbb{R}^d)^X.$ We can measure how far P and Q are from being directly affinely equivalent...

$$\triangleright$$
 Geometrically... $\Delta_G(P,Q) \stackrel{\text{def}}{=} \min_{\phi \in A_d} \max_{i \in X} \|p_i - \phi(q_i)\|_2$

 A_d the direct affine transforms of \mathbb{R}^d .

$$\triangleright$$
 Geometrically... $\Delta_G(P,Q) \stackrel{\text{\tiny def}}{=} \min_{\phi \in A_d} \max_{i \in X} \|p_i - \phi(q_i)\|_2$

 A_d the direct affine transforms of \mathbb{R}^d .

ightharpoonup Combinatorially... $\delta_C(P,Q) \stackrel{\text{def}}{=} \min\{k \in \mathbb{N} \colon P \not\prec_k Q\}$

 \triangleright Geometrically... $\Delta_G(P,Q) \stackrel{\text{def}}{=} \min_{\phi \in A_d} \max_{i \in X} \|p_i - \phi(q_i)\|_2$

 A_d the direct affine transforms of \mathbb{R}^d .

 \triangleright Combinatorially... $\delta_C(P,Q) \stackrel{\text{def}}{=} \min\{k \in \mathbb{N} : P \not\prec_k Q\}$

Theorem. For $d \geq 2$ and every full-dimensional point configuration $P \in (\mathbb{R}^d)^X$ there exists constants C(P) and $\tau(P) > 0$ such that for every $0 < \varepsilon \leq \tau(P)$, there exists a finite generic extension \widehat{P} of P, with $\widehat{P} \setminus P$ of size at most $C(P) \log \frac{1}{\varepsilon}$ such that every $Q \in (\mathbb{R}^d)^X$ on top of which $\chi_{\widehat{P}}$ can be realized satisfies $\Delta_G(P,Q) \leq \varepsilon$.

$$\triangleright$$
 Geometrically... $\Delta_G(P,Q) \stackrel{\text{\tiny def}}{=} \min_{\phi \in A_d} \max_{i \in X} \|p_i - \phi(q_i)\|_2$

 A_d the direct affine transforms of \mathbb{R}^d .

 \triangleright Combinatorially... $\delta_C(P,Q) \stackrel{\text{def}}{=} \min\{k \in \mathbb{N} : P \not\prec_k Q\}$

Theorem. For $d \geq 2$ and every full-dimensional point configuration $P \in (\mathbb{R}^d)^X$ there exists constants C(P) and $\tau(P) > 0$ such that for every $0 < \varepsilon \leq \tau(P)$, there exists a finite generic extension \widehat{P} of P, with $\widehat{P} \setminus P$ of size at most $C(P) \log \frac{1}{\varepsilon}$ such that every $Q \in (\mathbb{R}^d)^X$ on top of which $\chi_{\widehat{P}}$ can be realized satisfies $\Delta_G(P,Q) \leq \varepsilon$.

$$\delta_C(P,Q)$$
 controls $\Delta_G(P,Q)$.

$$\triangleright$$
 Geometrically... $\Delta_G(P,Q) \stackrel{\text{\tiny def}}{=} \min_{\phi \in A_d} \max_{i \in X} \|p_i - \phi(q_i)\|_2$

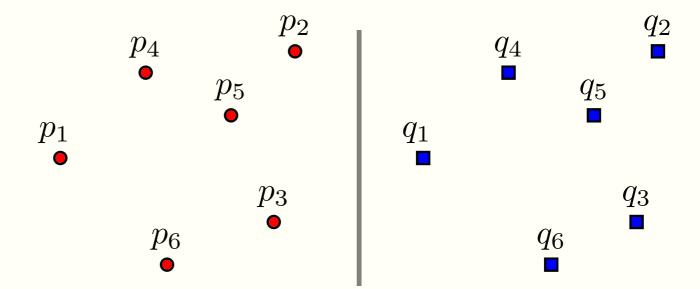
 A_d the direct affine transforms of \mathbb{R}^d .

 \triangleright Combinatorially... $\delta_C(P,Q) \stackrel{\text{def}}{=} \min\{k \in \mathbb{N} : P \not\prec_k Q\}$

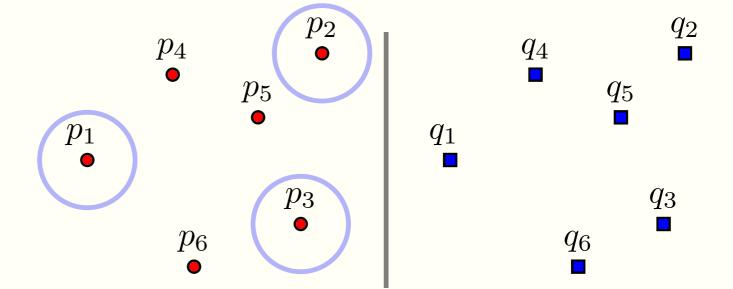
Theorem. For $d \geq 2$ and every full-dimensional point configuration $P \in (\mathbb{R}^d)^X$ there exists constants C(P) and $\tau(P) > 0$ such that for every $0 < \varepsilon \leq \tau(P)$, there exists a finite generic extension \widehat{P} of P, with $\widehat{P} \setminus P$ of size at most $C(P) \log \frac{1}{\varepsilon}$ such that every $Q \in (\mathbb{R}^d)^X$ on top of which $\chi_{\widehat{P}}$ can be realized satisfies $\Delta_G(P,Q) \leq \varepsilon$.

 $\delta_C(P,Q)$ controls $\Delta_G(P,Q)$. A single extension of P suffices...

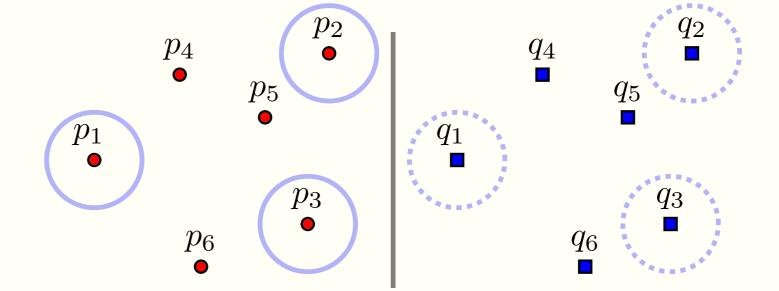
What's under the hood?



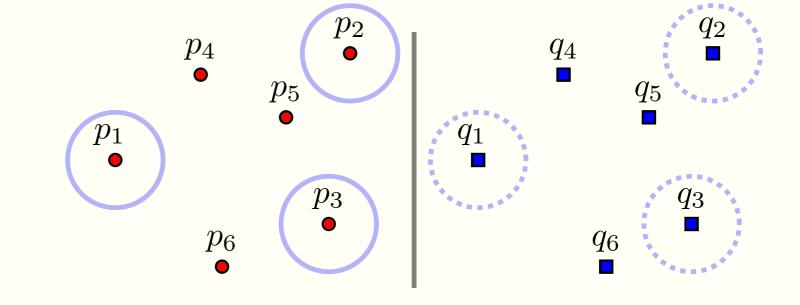
 \triangleright choose 3 points spanning \mathbb{R}^2



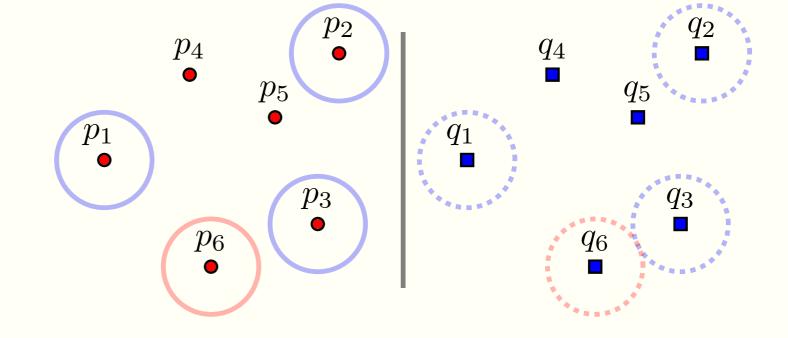
 \triangleright choose 3 points spanning \mathbb{R}^2



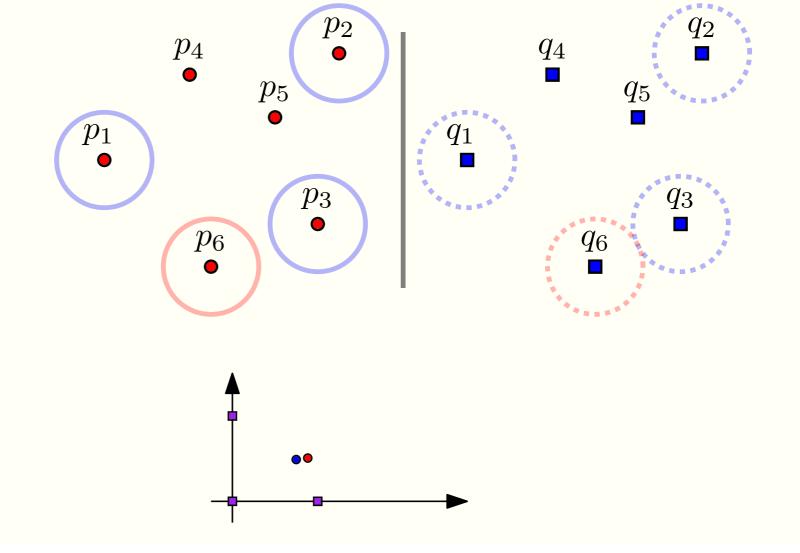
- \triangleright choose 3 points spanning \mathbb{R}^2
- ▷ check the candidate transform against every other point.



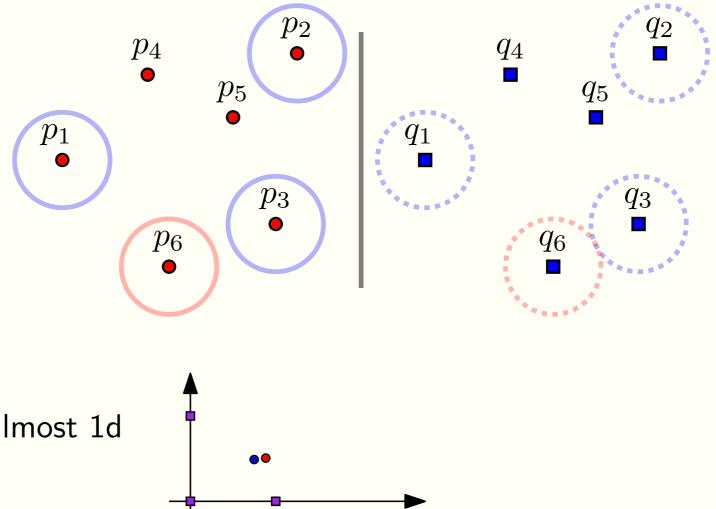
- \triangleright choose 3 points spanning \mathbb{R}^2
- ▷ check the candidate transform against every other point.
- b focus on the 4-tuples that fails.



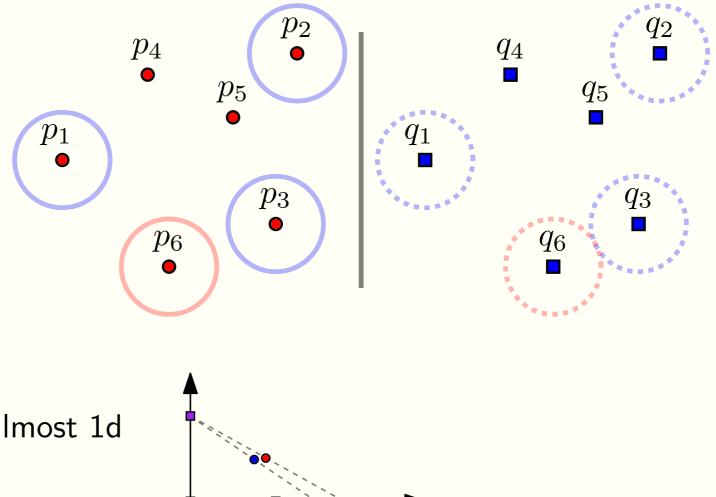
- \triangleright choose 3 points spanning \mathbb{R}^2
- ▷ check the candidate transform against every other point.
- b focus on the 4-tuples that fails.



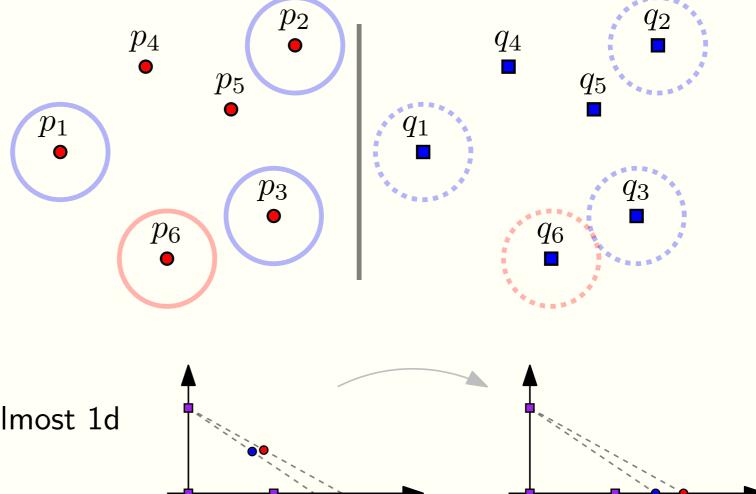
- \triangleright choose 3 points spanning \mathbb{R}^2
- ▷ check the candidate transform against every other point.
- be focus on the 4-tuples that fails.
- > use projections to make the problem almost 1d



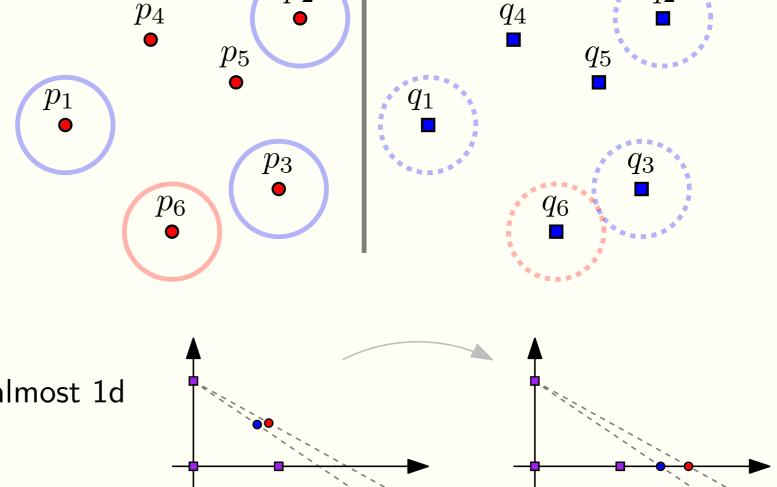
- \triangleright choose 3 points spanning \mathbb{R}^2
- ▷ check the candidate transform against every other point.
- be focus on the 4-tuples that fails.
- > use projections to make the problem almost 1d



- \triangleright choose 3 points spanning \mathbb{R}^2
- ▷ check the candidate transform against every other point.
- be focus on the 4-tuples that fails.
- > use projections to make the problem almost 1d

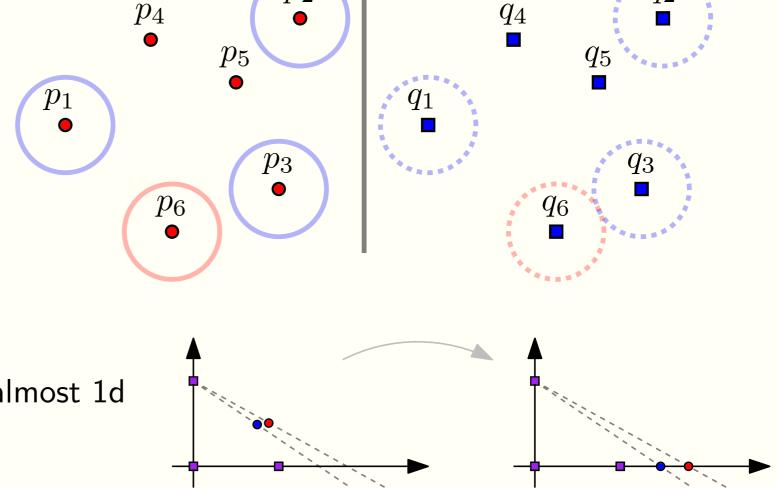


- \triangleright choose 3 points spanning \mathbb{R}^2
- ▷ check the candidate transform against every other point.
- b focus on the 4-tuples that fails.
- □ use projections to make the problem almost 1d



From there, 3 key ingredients:

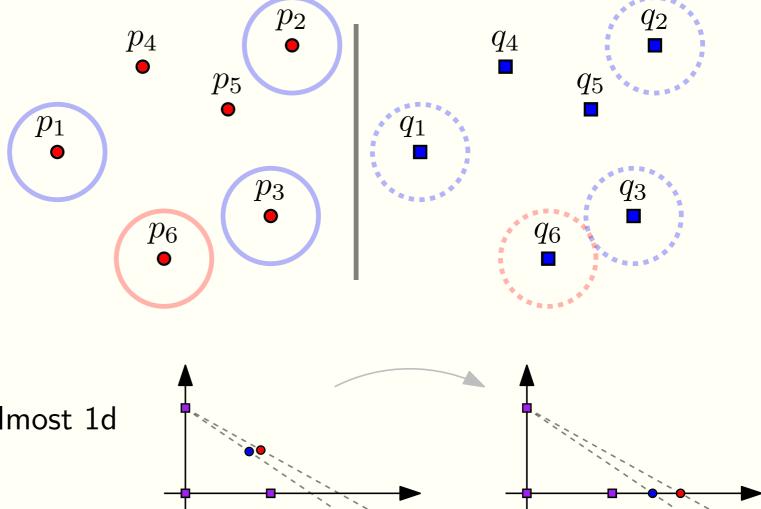
- \triangleright choose 3 points spanning \mathbb{R}^2
- ▷ check the candidate transform against every other point.
- b focus on the 4-tuples that fails.
- > use projections to make the problem almost 1d



From there, 3 key ingredients:

Von Staudt constructions

- \triangleright choose 3 points spanning \mathbb{R}^2
- ▷ check the candidate transform against every other point.
- b focus on the 4-tuples that fails.
- > use projections to make the problem almost 1d

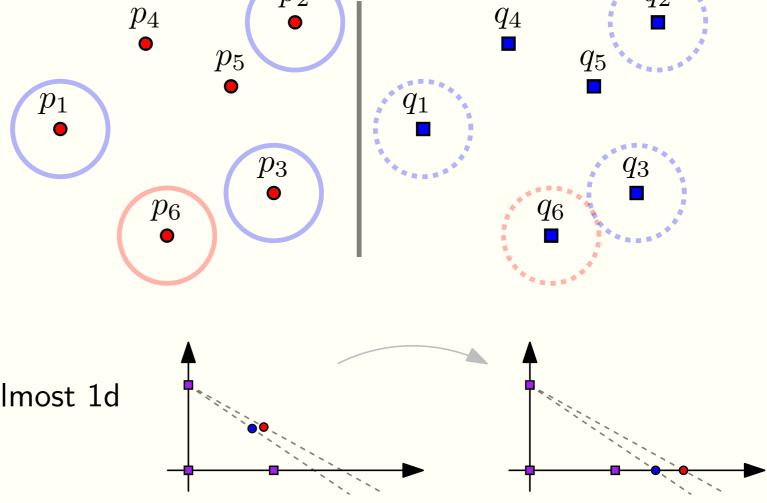


From there, 3 key ingredients :

Von Staudt constructions

parameterization by cross-ratio

- \triangleright choose 3 points spanning \mathbb{R}^2
- ▷ check the candidate transform against every other point.
- b focus on the 4-tuples that fails.
- □ use projections to make the problem almost 1d



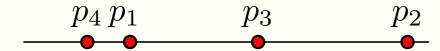
From there, 3 key ingredients:

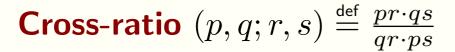
Von Staudt constructions

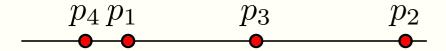
parameterization by cross-ratio

scatterings

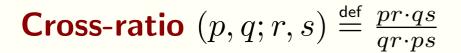
Cross-ratio
$$(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$$

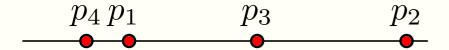






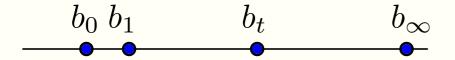
Fix b_0 , b_1 and b_{∞}

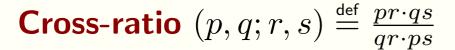




Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$





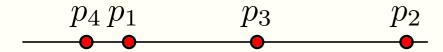


Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$

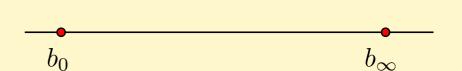
Cross-ratio $(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$



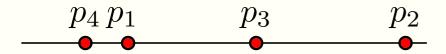
Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$



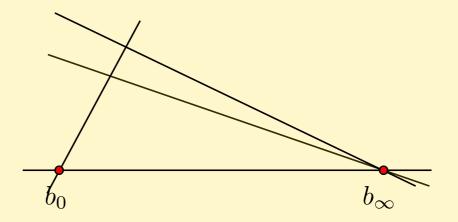
Cross-ratio $(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$



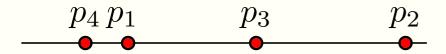
Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$



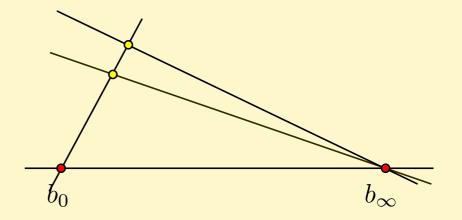
Cross-ratio $(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$



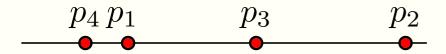
Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$



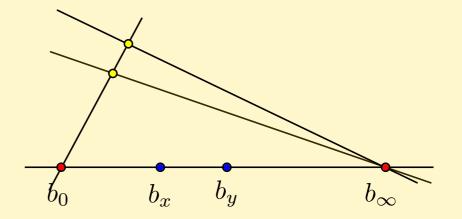
Cross-ratio $(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$



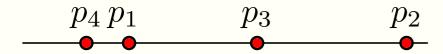
Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$



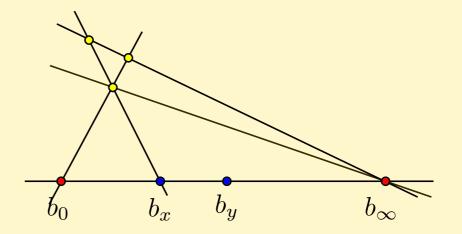
Cross-ratio $(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$



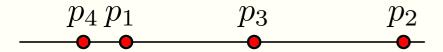
Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$



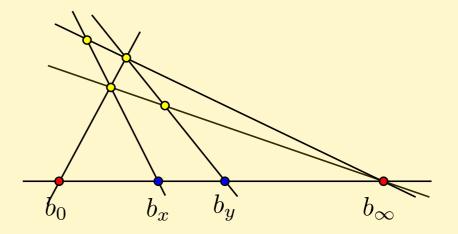
Cross-ratio $(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$



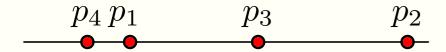
Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$



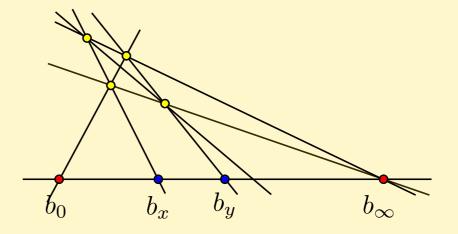
Cross-ratio $(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$



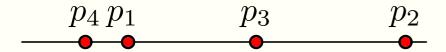
Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$



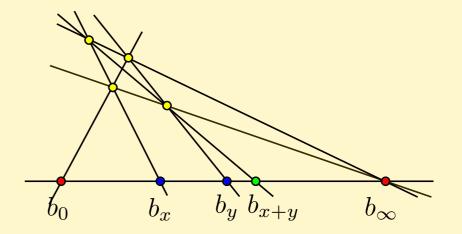
Cross-ratio $(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$



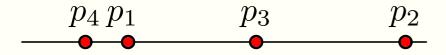
Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$



Cross-ratio
$$(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$$

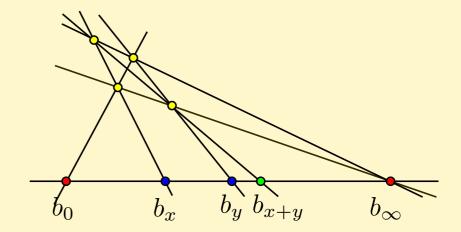


Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

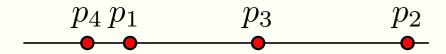
$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$

(2) express +,-,*,/ by incidences



→ sequence of alignment conditions such
that in every realization the points on the
real line are projectively equivalent.

Cross-ratio
$$(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$$

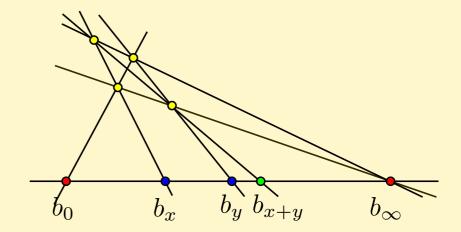


Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

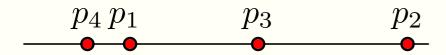
$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$

(2) express +,-,*,/ by incidences



→ sequence of alignment conditions such
that in every realization the points on the
real line are projectively equivalent.

Cross-ratio
$$(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$$

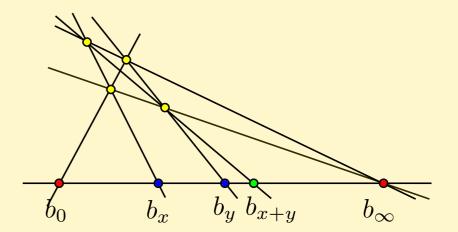


Fix b_0 , b_1 and b_{∞}

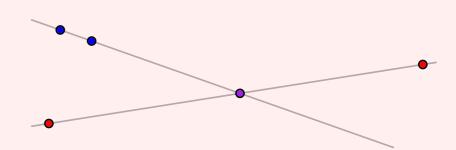
For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$

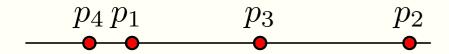
(2) express +,-,*,/ by incidences



→ sequence of alignment conditions such
that in every realization the points on the
real line are projectively equivalent.



Cross-ratio
$$(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$$

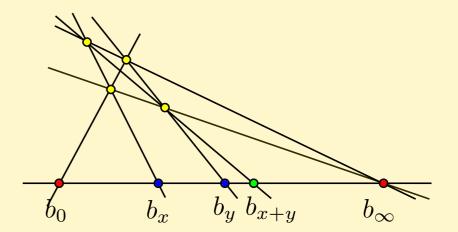


Fix b_0 , b_1 and b_{∞}

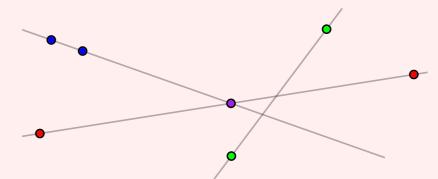
For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$

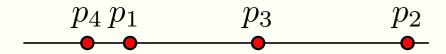
(2) express +,-,*,/ by incidences



→ sequence of alignment conditions such
that in every realization the points on the
real line are projectively equivalent.



Cross-ratio $(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$

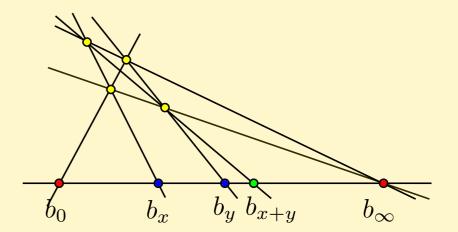


Fix b_0 , b_1 and b_{∞}

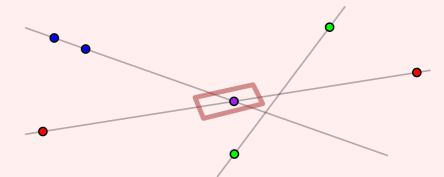
For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$

(2) express +,-,*,/ by incidences

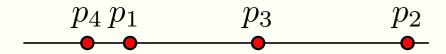


→ sequence of alignment conditions such
that in every realization the points on the
real line are projectively equivalent.



(1) Parameterizing $\mathbb R$ using cross-ratios

Cross-ratio
$$(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$$

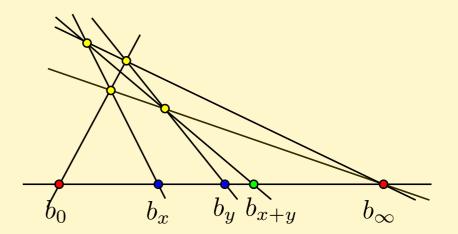


Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

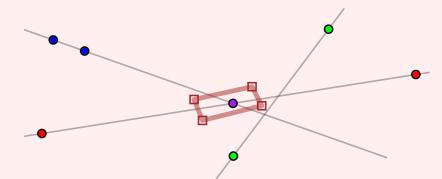
$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$

(2) express +,-,*,/ by incidences



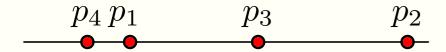
→ sequence of alignment conditions such
that in every realization the points on the
real line are projectively equivalent.

(3) Scatter!



(1) Parameterizing $\mathbb R$ using cross-ratios

Cross-ratio $(p, q; r, s) \stackrel{\text{def}}{=} \frac{pr \cdot qs}{qr \cdot ps}$

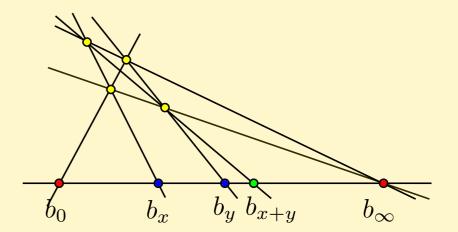


Fix b_0 , b_1 and b_{∞}

For $t \in \mathbb{R}$, define b_t to be the point such that $(b_0, b_\infty; b_t, b_1) = t$

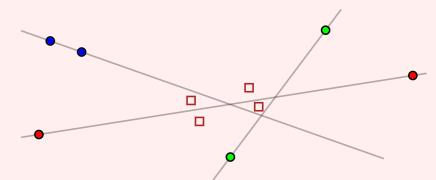
$$b_0 b_1 \qquad b_t \qquad b_{\infty}$$

(2) express +,-,*,/ by incidences

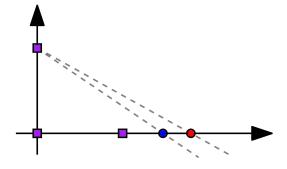


→ sequence of alignment conditions such
that in every realization the points on the
real line are projectively equivalent.

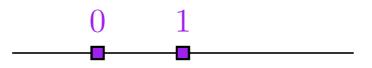
(3) Scatter!

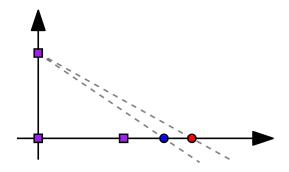


from $\mathbb R$ to \mathbb{RP}^1

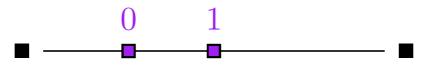


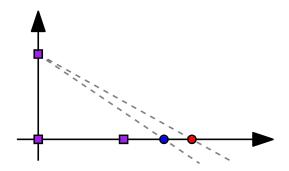
from $\mathbb R$ to $\mathbb R\mathbb P^1$



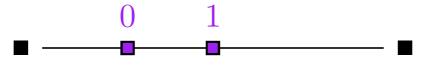


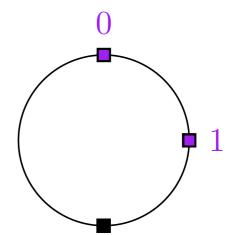
from $\mathbb R$ to $\mathbb R\mathbb P^1$

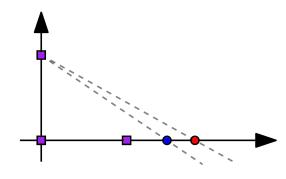




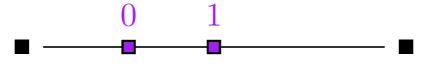
from $\mathbb R$ to $\mathbb R\mathbb P^1$

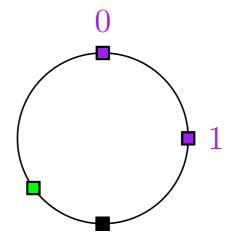


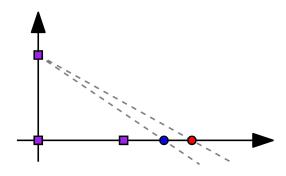




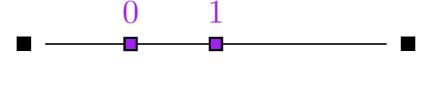
from $\mathbb R$ to $\mathbb R\mathbb P^1$

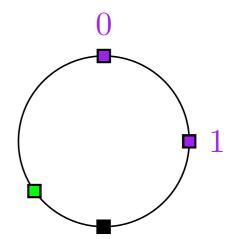


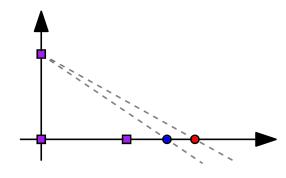




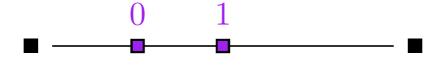
from $\mathbb R$ to $\mathbb R\mathbb P^1$

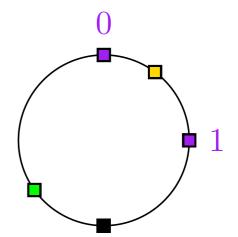


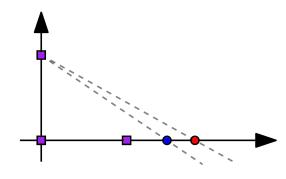




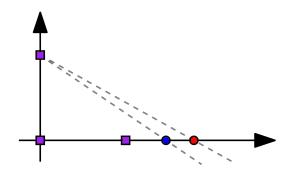
from $\mathbb R$ to $\mathbb R\mathbb P^1$

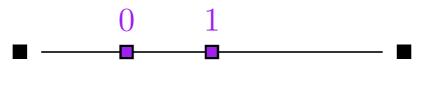


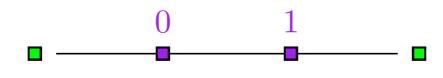


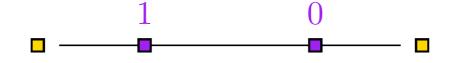


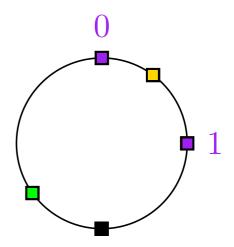
from $\mathbb R$ to $\mathbb R\mathbb P^1$



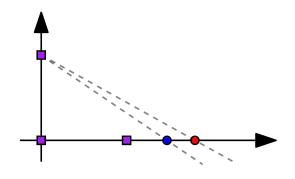


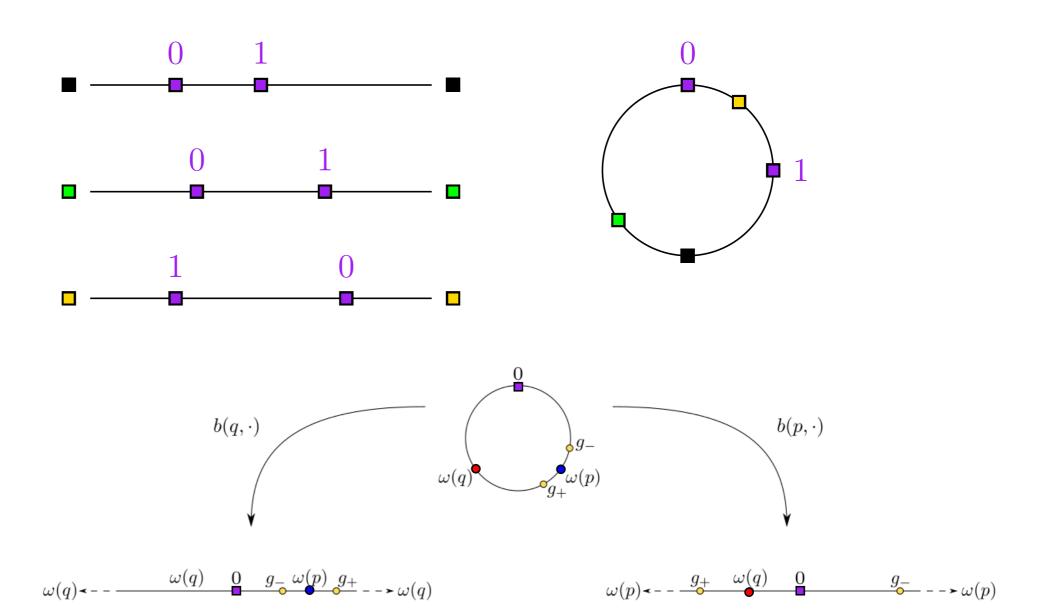


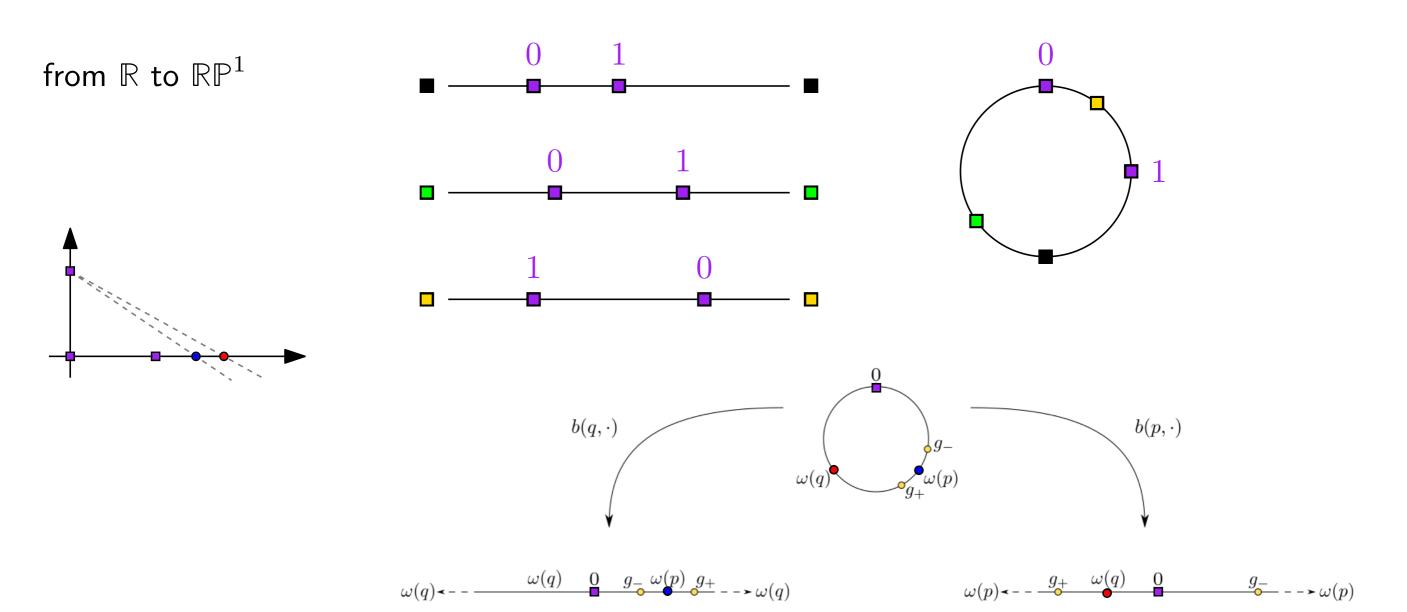




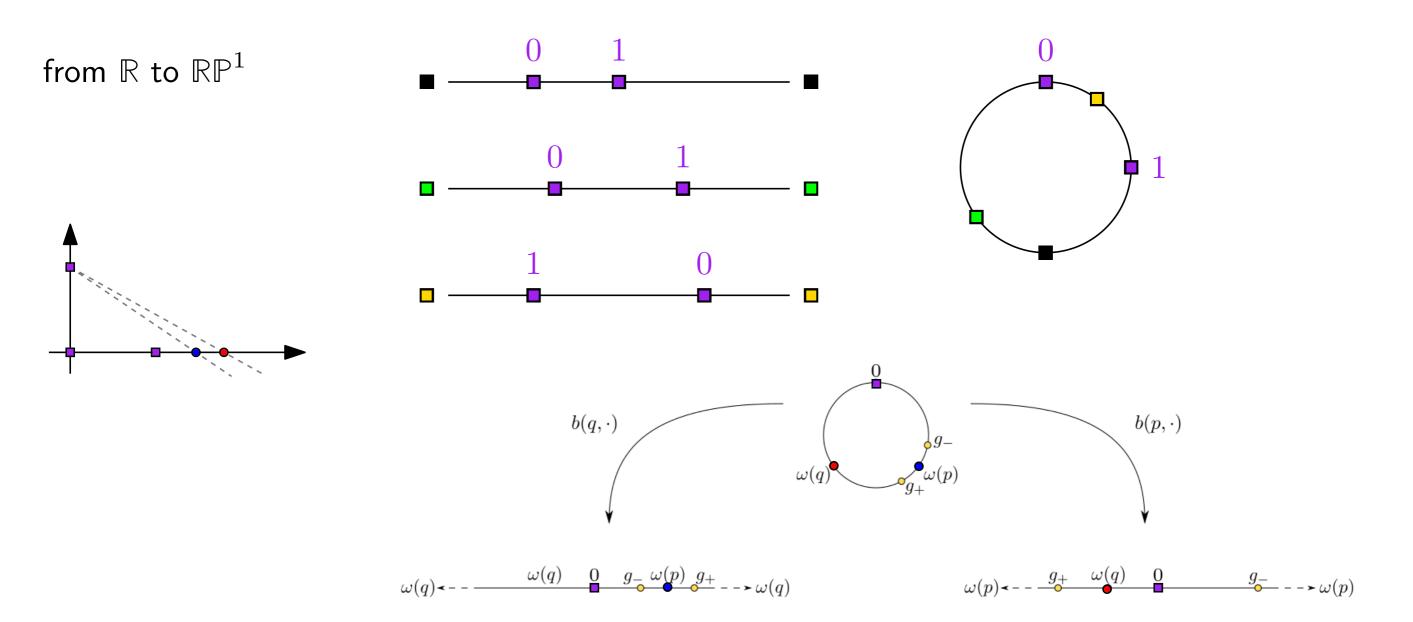
from $\mathbb R$ to $\mathbb R\mathbb P^1$



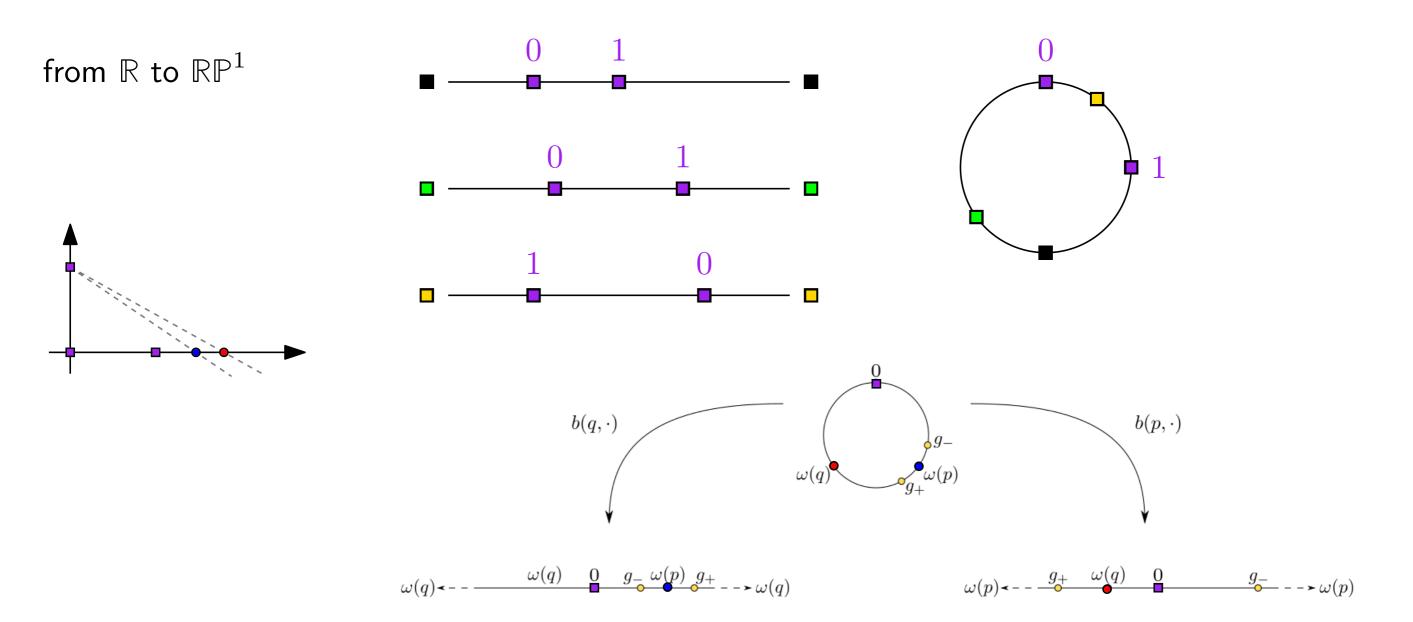




Separate • and • by two points.



Separate • and • by two points. Construct these points (Von Staudt).



Separate \bullet and \bullet by two points. Construct these points (Von Staudt). Analyze wrt ε ...

Many open questions...

Suppose we refine the notion of chirotope to account for the possible k-point extensions.

Yes for k = 1 [Alfonsin-Gros'25]

Yes for k = 1 [Alfonsin-Gros'25]

If yes, would that mean that universality can occur "locally"?

Yes for k = 1 [Alfonsin-Gros'25]

If yes, would that mean that universality can occur "locally"?

How efficiently can we decide whether two given point configurations have the same k-point extensions?

Yes for k = 1 [Alfonsin-Gros'25]

If yes, would that mean that universality can occur "locally"?

How efficiently can we decide whether two given point configurations have the same k-point extensions?

Is it true that on average, a n-point chirotope has $\Theta(n^4)$ 1-point extensions?

Yes for k = 1 [Alfonsin-Gros'25]

If yes, would that mean that universality can occur "locally"?

How efficiently can we decide whether two given point configurations have the same k-point extensions?

Is it true that on average, a n-point chirotope has $\Theta(n^4)$ 1-point extensions?

Thank you for your attention!