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▷ count,

▷ enumerate,
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▷ . . .

What if we add information ?

̸= ̸=allowable sequences, CCC systems, sweep
oriented matroids, adjoints of oriented matroids,

strong geometries, . . .
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Realization spaces mess with extensions...

n points in convex position.

Θ(n4) extensions with distinct chirotope.

But the chirotope ”convex position”

has Θ(2n/n) 1-element extensions...

So we want to understand the

extension vs realization relation better...
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Many open questions...
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Suppose we refine the notion of chirotope to account for the possible k-point extensions.

Is there still universality ?

Yes for k = 1 [Alfonsin-Gros’25]

How efficiently can we decide whether two given point configurations

have the same k-point extensions ?

Is it true that on average, a n-point chirotope has Θ(n4) 1-point extensions ?

If yes, would that mean that universality can occur ”locally” ?

Thank you for your attention !


