Lifting maps between graphs to embeddings

Alexey Gorelov

(supervisors: Francis Lazarus, Martin Deraux)

Institut Fourier, Université Grenoble Alpes, France

Let $f\colon X\to Y$ be a (smooth / piecewise linear / continuous) map between topological spaces. A *topological lifting* (to an embedding) is an embedding

$$F: X \hookrightarrow Y \times \mathbb{R}$$

such that $f = \operatorname{pr}_Y \circ F$.

Let $f\colon X\to Y$ be a (smooth / piecewise linear / continuous) map between topological spaces. A *topological lifting* (to an embedding) is an embedding

$$F\colon X\hookrightarrow Y\times\mathbb{R}$$

such that $f = \operatorname{pr}_{Y} \circ F$.

This concept is related to a classical question in topology: can a space X be embedded into some \mathbb{R}^n ?

It is natural to put additional restrictions on embeddings \implies the *liftability problem* for maps $X \to \mathbb{R}^{n-1}$.

We focus on *non-degenerate maps*, that is, maps whose fibers $f^{-1}(y)$ are finite.

We focus on *non-degenerate maps*, that is, maps whose fibers $f^{-1}(y)$ are finite.

Theorem (Poénaru, 1979; Carter-Saito, 1998; G., 2025)

The liftability problems for smooth immersions and for non-degenerate piecewise-linear maps between polyhedra reduce to the case of non-degenerate piecewise-linear maps between graphs.

Topological liftings: maps between graphs

Triangulations of non-degenerate piecewise-linear maps between graphs = morphisms of graphs.

Topological liftings: maps between graphs

Triangulations of non-degenerate piecewise-linear maps between graphs = morphisms of graphs.

Geometric intuition

Given a graph morphism $f\colon G\to H$, we want to obtain an embedding by:

- 1. replacing each edge by a strip $[0,1] \times \mathbb{R}$, and
- 2. perturbing the image of f along the new dimension.

Topological liftings: maps between graphs

Triangulations of non-degenerate piecewise-linear maps between graphs = morphisms of graphs.

Geometric intuition

Given a graph morphism $f\colon G\to H$, we want to obtain an embedding by:

- 1. replacing each edge by a strip $[0,1] \times \mathbb{R}$, and
- 2. perturbing the image of f along the new dimension.

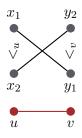
A map.

A lifting.

Combinatorial liftings

Suppose $f\colon G\to H$ is a morphism of graphs. A *combinatorial lifting* is a collection of linear orders $\{<_p|\ p\in V(H)\ \}$ on the fibers $f^{-1}(p)$ without crossings.

A *crossing* occurs when there exist edges $x_1y_1, x_2y_2 \in E(G)$ such that $f(x_1)f(y_1) = f(x_2)f(y_2) = uv \in E(H)$, but $x_1 >_u x_2$ and $y_1 <_v y_2$.



Combinatorial liftings

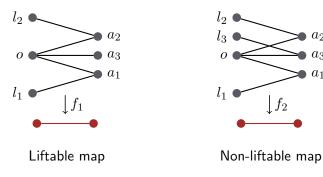
Theorem (G., 2025)

For any graph morphism $f \colon G \to H$, there is a bijection between combinatorial liftings and isotopy classes of topological liftings (of |f|).

Combinatorial liftings

Theorem (G., 2025)

For any graph morphism $f: G \to H$, there is a bijection between combinatorial liftings and isotopy classes of topological liftings (of |f|).



 a_2

 a_1

Problems

Liftability problem

Given a morphism f, does there exist a lifting F of f? How can one construct such an F?

Problems

Liftability problem

Given a morphism f, does there exist a lifting F of f? How can one construct such an F?

Constrained liftability problem

Given a morphism f and a collection of order constraints on pairs (v,w) with f(v)=f(w), does there exist a lifting F of f realizing all these constraints?

Problems

Liftability problem

Given a morphism f, does there exist a lifting F of f? How can one construct such an F?

Constrained liftability problem

Given a morphism f and a collection of order constraints on pairs (v,w) with f(v)=f(w), does there exist a lifting F of f realizing all these constraints?

When we consider maps to path graphs, these problems are known as the *level planarity* and *constrained level planarity* problems, respectively.

► *Liftability problem* (for graphs): NP-complete in general (G., 2025).

- Liftability problem (for graphs): NP-complete in general (G., 2025).
- Level planarity problem:
 - Linear-time testing and embedding algorithms exist (Jünger, Leipert, Mutzel, 1998; Jünger, Leipert, 2002) but are technically complex.

- Liftability problem (for graphs): NP-complete in general (G., 2025).
- Level planarity problem:
 - Linear-time testing and embedding algorithms exist (Jünger, Leipert, Mutzel, 1998; Jünger, Leipert, 2002) but are technically complex.
 - Several polynomial (embedding) algorithms were proposed (Randerath et al., 2001; Healy, Kuusik, 2004; Harrigan, Healy, 2007), all later shown incorrect (Fink et al, 2024).

- Liftability problem (for graphs): NP-complete in general (G., 2025).
- Level planarity problem:
 - Linear-time testing and embedding algorithms exist (Jünger, Leipert, Mutzel, 1998; Jünger, Leipert, 2002) but are technically complex.
 - Several polynomial (embedding) algorithms were proposed (Randerath et al., 2001; Healy, Kuusik, 2004; Harrigan, Healy, 2007), all later shown incorrect (Fink et al, 2024).
 - According to Fink et al (2024), "this leaves no correct simple embedding algorithm for level graphs. In particular, we are not aware of any correct implementation for embedding level-planar graphs".

- Liftability problem (for graphs): NP-complete in general (G., 2025).
- Level planarity problem:
 - Linear-time testing and embedding algorithms exist (Jünger, Leipert, Mutzel, 1998; Jünger, Leipert, 2002) but are technically complex.
 - Several polynomial (embedding) algorithms were proposed (Randerath et al., 2001; Healy, Kuusik, 2004; Harrigan, Healy, 2007), all later shown incorrect (Fink et al, 2024).
 - 3. According to Fink et al (2024), "this leaves no correct simple embedding algorithm for level graphs. In particular, we are not aware of any correct implementation for embedding level-planar graphs".
- ► Constrained level planarity: NP-complete even when G is a union of path graphs (Klemz, Rote, 2019) and for 4 levels (Blažej et al, 2024).

Graphs of pairs and 2-obstructors

Let $f \colon G \to H$ be a graph morphism. The graph of pairs $G_f^{(2)}$ consists of:

- lacktriangle vertices: pairs (a,b) of distinct vertices of G with f(a)=f(b);
- $lackbox{ edges: } (a,b)(c,d)$ is an edge of $G_f^{(2)}$ if G has edges ac and bd.

Graphs of pairs and 2-obstructors

Let $f \colon G \to H$ be a graph morphism. The graph of pairs $G_f^{(2)}$ consists of:

- vertices: pairs (a,b) of distinct vertices of G with f(a)=f(b);
- lacksquare edges: (a,b)(c,d) is an edge of $G_f^{(2)}$ if G has edges ac and bd.

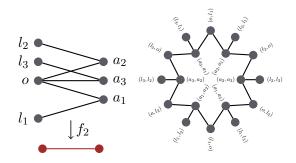
A path in $G_f^{(2)}$ connecting (a,b) and (b,a) is called a *2-obstructor*. The map f satisfies the *2-obstructor condition* if no 2-obstructor exists.

Graphs of pairs and 2-obstructors

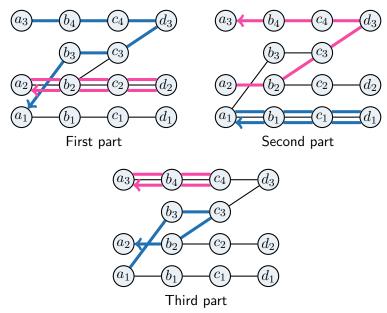
Let $f \colon G \to H$ be a graph morphism. The graph of pairs $G_f^{(2)}$ consists of:

- lacktriangle vertices: pairs (a,b) of distinct vertices of G with f(a)=f(b);
- edges: (a,b)(c,d) is an edge of $G_f^{(2)}$ if G has edges ac and bd.

A path in $G_f^{(2)}$ connecting (a,b) and (b,a) is called a 2-obstructor. The map f satisfies the 2-obstructor condition if no 2-obstructor exists.



2-obstructors: Siekłucki's example



Conjectures

- maps from arbitrary graphs to segments?
- maps between trees?
- maps from arbitrary graphs to trees?

Conjectures

- maps from arbitrary graphs to segments? Yes.
- maps between trees?
- maps from arbitrary graphs to trees?
- It is not difficult to deduce this from the existing Hanani–Tutte-style results on level planarity. Also, there are two alternative proofs: for generic maps $T \to P$ (G., 2025), and for arbitrary maps $T \to P$ (not yet published).

Conjectures

- ▶ maps from arbitrary graphs to segments? Yes.
- maps between trees? Unknown.
- maps from arbitrary graphs to trees?
- It is not difficult to deduce this from the existing Hanani–Tutte-style results on level planarity. Also, there are two alternative proofs: for generic maps $T \to P$ (G., 2025), and for arbitrary maps $T \to P$ (not yet published).

Conjectures

- maps from arbitrary graphs to segments? Yes.
- maps between trees? Unknown.
- maps from arbitrary graphs to trees? No.
- It is not difficult to deduce this from the existing Hanani–Tutte-style results on level planarity. Also, there are two alternative proofs: for generic maps $T \to P$ (G., 2025), and for arbitrary maps $T \to P$ (not yet published).
- ▶ There exists a non-liftable map $G \rightarrow T$ satisfying the 2-obstructor condition (G., 2025).

For now, we are dealing only with *maps from trees to path graphs*.

For now, we are dealing only with maps from trees to path graphs.

Idea

1. Liftings of these maps can be changed by certain "moves".

Geometry of $\boldsymbol{G}_f^{(2)}$ and "moves" on liftings

For now, we are dealing only with maps from trees to path graphs.

Idea

- 1. Liftings of these maps can be changed by certain "moves".
- 2. The geometry of $G_f^{(2)}$ tells us when such moves are possible.

For now, we are dealing only with maps from trees to path graphs.

Idea

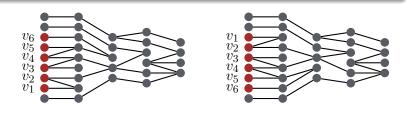
- 1. Liftings of these maps can be changed by certain "moves".
- 2. The geometry of $G_f^{(2)}$ tells us when such moves are possible.
- 3. This leads to a family of conditions extending the 2-obstructor condition.

Theorem

Let $f \colon T \to P$ be a map from a tree to a path graph, and let F be its lifting.

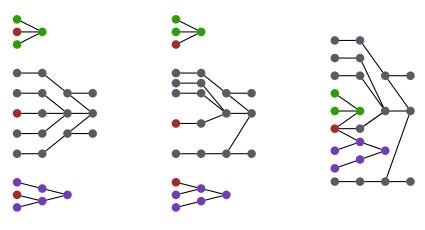
- ▶ Consider a segment [a, b] in the first fiber $f^{-1}(0)$.
- Let l, h be the minimal and maximal vertices in the last fiber $f^{-1}(\max P)$.

Then [a,b] can be flipped without changing the order in the last fiber if (a,b) and (l,h) lie in different components of $T_f^{(2)}$.



Geometry of ${\cal G}_f^{(2)}$ and "moves" on liftings: combining liftings

Liftings can be *combined* using these "moves" by identifying selected leaves in the first fibers. The result is a valid lifting *iff* the 2-obstructor condition holds for the combined map.



 We provide a constructive, self-contained proof that the 2-obstructor condition is complete for trees to path graphs. This also yields a polynomial algorithm for constructing a lifting: not the most efficient, but relatively simple to implement.

- We provide a constructive, self-contained proof that the 2-obstructor condition is complete for trees to path graphs. This also yields a polynomial algorithm for constructing a lifting: not the most efficient, but relatively simple to implement.
- Using these "moves", the constrained liftability problem for trees to path graphs (with total orders in first and last fibers as constraints) can be solved in polynomial time.

- We provide a constructive, self-contained proof that the 2-obstructor condition is complete for trees to path graphs. This also yields a polynomial algorithm for constructing a lifting: not the most efficient, but relatively simple to implement.
- 2. Using these "moves", the constrained liftability problem for trees to path graphs (with total orders in first and last fibers as constraints) can be solved in polynomial time.
- We hope this approach can be generalized to other settings, e.g., maps from arbitrary graphs to path graphs, or maps to trees.

References

- NP-completeness in general, relations to topology and approximability by embeddings:
 - A. G. "Lifting maps between graphs to embeddings", Essays on Topology: Dedicated to Valentin Poénaru, 2025. arXiv:2404.12287.
- 2. Overview of results on level planarity mentioned in my talk:
 - Simon D. Fink, Matthias Pfretzschner, Ignaz Rutter, Peter Stumpf, "Level Planarity Is More Difficult Than We Thought", *arXiv:2409.01727*.
- 3. NP-completeness of constrained level planarity:
 - Boris Klemz, Günter Rote, "Ordered level planarity and its relationship to geodesic planarity, bi-monotonicity, and variations of level planarity." ACM Transactions on Algorithms, 15(4):1–25, 2019. arXiv:1708.07428.
- 4. Lifting "moves": WIP.