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o Let g € C[t, 2] (n = deg,(g)),
WANN o define F(z) = g(t, z).
C, e Let b € C\X be a base point,

e let 7 :[0,1] — C\X be a loop starting
at

e The displacement of all roots of F;
when t moves along - defines a braid.

Input: g, v
Output: the associated braid in terms of

Artin's generators
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Configurations

Ordered configurations Configurations
OC, = {(x1,..., %) € C": Vi # j, xi # x;}. C, = {subsets of size n in C}.
Xl °
X o
X 2 o
3
X o

“Forget order” projection
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Braid group

Braid . . .

Homotopy class of a path : [0,1] — C, such
that 8(0) = 8(1) = {1,...,n}.
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Braid group

Braid 1 r
Homotopy class of a path : [0,1] — C, such
that 8(0) = B(1) ={1,...,n}.

In practice, we will manipulate paths in OC,.
Braid group B,

id: class of the constant path equal to {1,..., n}.
Law: [ﬁl][fb] = [61 . /32]

Rk: this is m1(Cs, {1,...,n}).

idg,
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Artin’s theorem

AL N
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The o;'s generate B, (+ explicit relations).
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Certified homotopy continuation

Input: H:[0,1] x C" — C" and z € C" such that g
H(0,z) = 0.

There exists ¢ : [0,1] — C" such that H(s,((s)) =0
and ((0) = z. Assume it is unique.
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Certified homotopy continuation

Input: H:[0,1] x C" — C" and z € C" such that
H(0,z) = 0.

There exists ¢ : [0,1] — C" such that H(s,((s)) =0
and ((0) = z. Assume it is unique.

Output: A tubular neighborhood isolating (.

We can to that for every solution at s = 0.

Recall g € CJ[t, z] and ~ : [0,1] — C\X from first slide.
Apply certified homotopy continuation to
H(s, z) = g(v(s), 2).
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Today’s goal

We now assume ¢ = ((1,...,¢n) ¢ [0,1] = OC, inducing a loop in C,

Goal

Input : ¢ .

Output : A decomposition in standard generators of the braid induced by (i, ..., (..
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Today’s goal

We now assume ¢ = ((1,...,¢n) ¢ [0,1] = OC, inducing a loop in C,
Goal

Input : ¢ .
Output : A decomposition in standard generators of the braid induced by (i, ..., (..

Overall strategy /
I We do not have access to ¢, not even to ¢(0).

1) Find a path fthat has same associated braid.

2) Decompose (.

010,
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Related work

SIROCCO [Marco-Buzunariz and Rodriguez, 2016]
e Tubular neighborhoods are piecewise linear.

e For each strand (;, computes a piecewise linear path
in the tube.

e ‘“Intuitive” (! non generic cases) algorithm on the
braid with piecewise linear strands.
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Related work

SIROCCO [Marco-Buzunariz and Rodriguez, 2016]
e Tubular neighborhoods are piecewise

e For each strand (;, computes a piecewise linear path
in the tube.

e ‘“Intuitive” (! non generic cases) algorithm on the
braid with piecewise linear strands.

Algpath [G. and Lairez, 2024]

e Tubular neighborhoods are piecewise

Faster than SIROCCO.

! Finding a piecewise linear path in the tube requires

additional work.
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Data structure

Strand separation interface

We assume a function sep(/, j, t) that returns
t' € (t,1] and a symbol in x € {—, <, —,+ 1,
such that for all s € [t, '],

* Re((i(s)) < Re((s)) if = —,
o Re(Gi(s)) > Re(¢i(5)) if % =
o Im(¢i(s)) < Im(¢j(s)) if x = —, AN
o Im(¢i(s)) > Im(¢(s)) if x = <. P00 = (8
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Recall: OC, = {(x1,...,xp) € C": Vi # j, xi # x;}.

Definition

A cell is a pair ¢ = (R, /) of relations on {1,...,n}.
We associate to it a topological space |c| C OC,
whose points are (xi,...,x,) € OC, such that

o for all (/,/) € R, Re(xi) < Re(x;),
e for all (i,)) € I, Im(x;) < Im(x;),

Notation
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Recall: OC, = {(x1,...,xp) € C": Vi # j, x; # x;}.

Definition

A cell is a pair ¢ = (R, /) of relations on {1,...,n}.

We associate to it a topological space |c| € OC, c=(2,9): |c| = 0C,,
whose points are (xi,...,x,) € OC, such that

P 2 p 5
o for all (/,/) € R, Re(xi) < Re(x;), \“/ '\ /
e for all (i,)) € I, Im(x;) < Im(x;), : s

Notation (4,9_,340 glel ) = @
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Properties of cells

Empty cells
A cell is empty if and only if there is a cycle
in Rorin /.

Convex cells

A (non-empty) cell is convex if and only if for
all i,j € {1,...,n}, either i—*j or j—*i or
i—*j or j—*i. We call this graph property
“monochromatic semi-connectedness” (m.s.c.
for short).

Intersection of cells

Given ¢ = (R, /) and ¢’ = (R, I") two cells,
the space associated to (RUR', I UI") is
el e’

lcl + P lel =@

/Iﬁl /Iﬁ?.

we——

Ge— G 3

lcl onvex lcl not convex
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Step 1: compute a sequence of cells

Cl)

Path to cells ‘

Input: ¢ (represented by tubular neighborhoods).
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- ~
Path to cells ( ¢t h \C\\
Input: ¢ (represented by tubular neighborhoods). \ )
Output: a sequence of convex cells ¢i,--- , ¢, such AN

that there exists 0 = ty < --- < t, = 1 and for any
S c [t,'_l, t,'], C(S) € €f

Idea:
e Start with an initial convex cell ¢ containing ¢(0).
e Associate to each edge a time of validity.
e When a relation expires, update it using sep and
repair convexity.
e Repeat.
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Step 2: linearize (

Definition
Let 7,0 € &,. We define
Prp = (n(1) +ip(1), - -+ , 7(n) +iip(n)) € OCy.
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For each ¢, ¢ci11, we compute 7, ¢ such that p; = pr o,
lies in the intersection ¢; N ¢;y1 (Hint: total order
extending R and /).
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Step 2: linearize (

Definition
Let 7,0 € &,. We define
Prp = (n(1) +ip(1), - -+ , 7(n) +iip(n)) € OCy.

Linearization of (

For each ¢, ¢ci11, we compute 7, ¢ such that p; = pr o,
lies in the intersection ¢; N ¢;y1 (Hint: total order
extending R and /). The linear interpolation of the p;

is homotopic to (. Why? cells are convex!
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Step 3: decomposition of the linearization

Reduction / Cre \

e Computing the braid associated to the whole /
linearization or to each piece and concatenating
the results is equivalent. \
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linearization or to each piece and concatenating
the results is equivalent.

e Assume pr ., and p, s both lie in a convex cell
c = (R, ). It means that 7,7’ extend R and
v, ¢ extend /.
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Step 3: decomposition of the linearization

Reduction

e Computing the braid associated to the whole
linearization or to each piece and concatenating
the results is equivalent.

e Assume pr ., and p, s both lie in a convex cell
c = (R, ). It means that 7,7’ extend R and
v, ¢ extend /.

e We compute the braid of pr , — pr. then the
braid of pr ./ — pr/ .
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Step 3: decomposition of the linearization

|
|
A O

Ae B, 2l

%

Pr,o — Pr,e trivial braid.
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trivial braid.

Step 3: decomposition of the linearization
Pr,o =7 Pry’:



Step 3: decomposition of the linearization

. s
P9 3 § “—L)ﬁ})
*z NINER
.C{qlu)
3
I 31‘-={1234
|°§4“ 114y
2 % % % '
o v 3 g
A6 B, 2 :t’uza3>
L]
1

Pr,o — Pr,e trivial braid.
Pr.p — Prs.or: Decompose '™t =s; -5

r

in elementary transpositions. Output ;' -0}
with g1, ,&, € {£1} computed using ¢’.
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Conclusion

~/2025/code/braid_group cargo run --release
Finished ‘release’ profile [optimized] target(s) in 0.08s
Running 'target/release/braid_group’
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