# Braid monodromy computations using certified path tracking

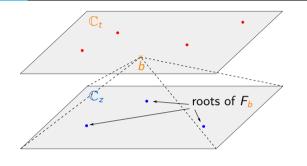
Alexandre Guillemot Joint work with Pierre Lairez MATHEXP, Inria, France

Journées de géométrie algorithmique October 14, 2025 | Roscoff

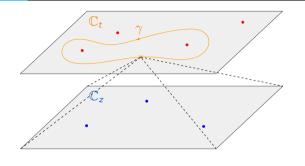




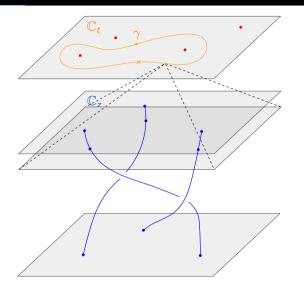




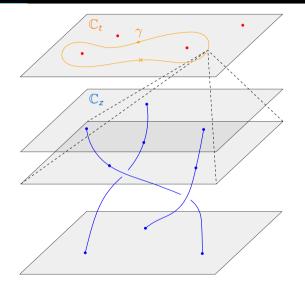
- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,



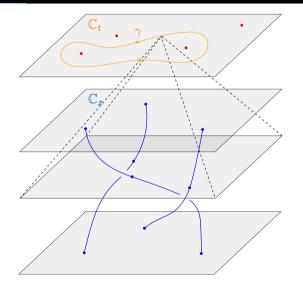
- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.



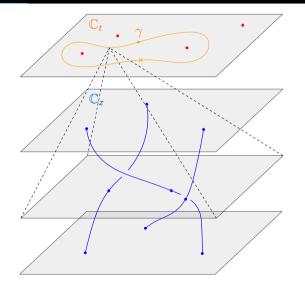
- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.



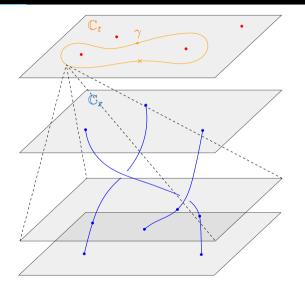
- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.



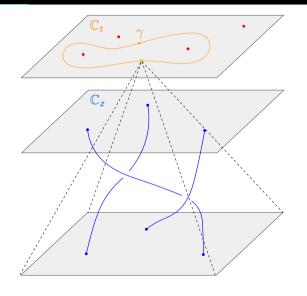
- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.



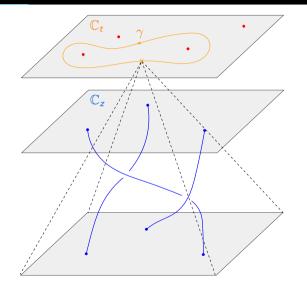
- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.



- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.



- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.



### Setup

- Let  $g \in \mathbb{C}[t,z]$   $(n = \deg_z(g))$ ,
- define  $F_t(z) = g(t, z)$ .
- Let  $b \in \mathbb{C} \setminus \Sigma$  be a base point,
- let  $\gamma:[0,1]\to\mathbb{C}\backslash\Sigma$  be a loop starting at b.
- The displacement of all roots of  $F_t$  when t moves along  $\gamma$  defines a braid.

### Algorithmic goal

Input: g,  $\gamma$ 

**Output:** the associated braid in terms of Artin's generators

# Configurations

#### **Ordered configurations**

$$OC_n = \{(x_1, \ldots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$$

(

Χ

# Configurations

$$C_n = \{ \text{subsets of size } n \text{ in } \mathbb{C} \}.$$

(

•

"Forget order" projection

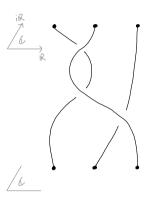
$$\begin{array}{cccc} \Phi: & \textit{OC}_n & \rightarrow & \textit{C}_n \\ & (x_1, \dots, x_n) & \mapsto & \{x_1, \dots, x_n\}. \end{array}$$

## **Braid**

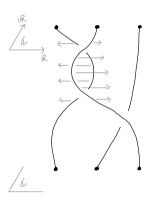




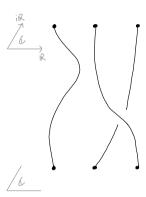
# **Braid**



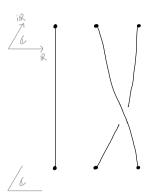
# **Braid**



## **Braid**



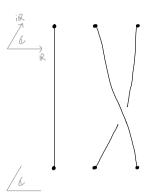
## **Braid**



## **Braid**

Homotopy class of a path  $\beta:[0,1]\to C_n$  such that  $\beta(0)=\beta(1)=\{1,\ldots,n\}.$ 

In practice, we will manipulate paths in  $OC_n$ .



#### **Braid**

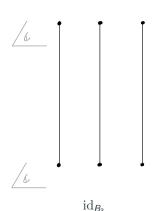
Homotopy class of a path  $\beta:[0,1]\to C_n$  such that  $\beta(0)=\beta(1)=\{1,\ldots,n\}.$ 

In practice, we will manipulate paths in  $OC_n$ .

# Braid group $B_n$

 $\mathrm{id}$ : class of the constant path equal to  $\{1,\ldots,n\}$ . Law:  $[\beta_1][\beta_2]:=[\beta_1\cdot\beta_2].$ 

Rk: this is  $\pi_1(C_n, \{1, ..., n\})$ .



#### **Braid**

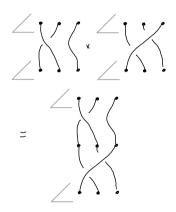
Homotopy class of a path  $\beta:[0,1]\to C_n$  such that  $\beta(0)=\beta(1)=\{1,\ldots,n\}.$ 

In practice, we will manipulate paths in  $OC_n$ .

# Braid group $B_n$

id: class of the constant path equal to  $\{1, \ldots, n\}$ . Law:  $[\beta_1][\beta_2] := [\beta_1 \cdot \beta_2]$ .

Rk: this is  $\pi_1(C_n, \{1, ..., n\})$ .



### **Braid**

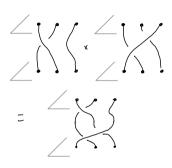
Homotopy class of a path  $\beta:[0,1]\to C_n$  such that  $\beta(0)=\beta(1)=\{1,\ldots,n\}.$ 

In practice, we will manipulate paths in  $OC_n$ .

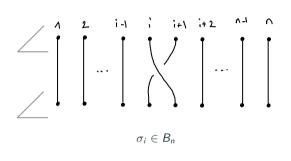
# Braid group $B_n$

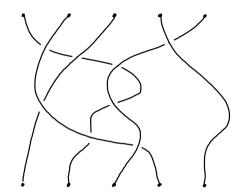
id: class of the constant path equal to  $\{1, \ldots, n\}$ . Law:  $[\beta_1][\beta_2] := [\beta_1 \cdot \beta_2]$ .

Rk: this is  $\pi_1(C_n, \{1, ..., n\})$ .



# Artin's theorem

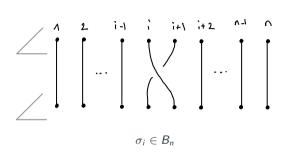




# Theorem [Artin, 1947]

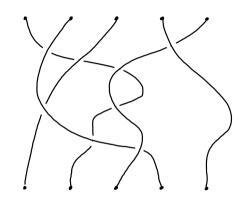
The  $\sigma_i$ 's generate  $B_n$  (+ explicit relations).

# Artin's theorem



# Theorem [Artin, 1947]

The  $\sigma_i$ 's generate  $B_n$  (+ explicit relations).

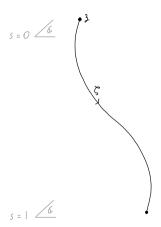


$$\sigma_4 \sigma_1^{-1} \sigma_2^{-1} \sigma_3^{-1} \sigma_3 \sigma_1 \sigma_2 \sigma_3^{-1}$$

## **Certified homotopy continuation**

**Input:**  $H: [0,1] \times \mathbb{C}^r \to \mathbb{C}^r$  and  $z \in \mathbb{C}^r$  such that H(0,z) = 0.

There exists  $\zeta: [0,1] \to \mathbb{C}^r$  such that  $H(s,\zeta(s)) = 0$  and  $\zeta(0) = z$ . Assume it is unique.

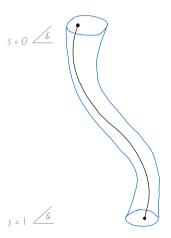


### **Certified homotopy continuation**

**Input:**  $H: [0,1] \times \mathbb{C}^r \to \mathbb{C}^r$  and  $z \in \mathbb{C}^r$  such that H(0,z) = 0.

There exists  $\zeta:[0,1]\to\mathbb{C}^r$  such that  $H(s,\zeta(s))=0$  and  $\zeta(0)=z$ . Assume it is unique.

**Output:** A tubular neighborhood isolating  $\zeta$ .



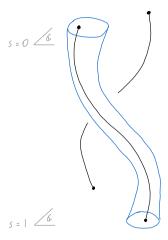
## **Certified homotopy continuation**

**Input:**  $H: [0,1] \times \mathbb{C}^r \to \mathbb{C}^r$  and  $z \in \mathbb{C}^r$  such that H(0,z) = 0.

There exists  $\zeta:[0,1] o \mathbb{C}^r$  such that  $H(s,\zeta(s))=0$ 

and  $\zeta(0) = z$ . Assume it is unique.

**Output:** A tubular neighborhood isolating  $\zeta$ .



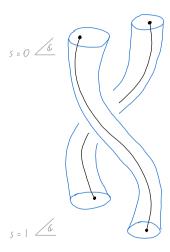
## **Certified homotopy continuation**

**Input:**  $H: [0,1] \times \mathbb{C}^r \to \mathbb{C}^r$  and  $z \in \mathbb{C}^r$  such that H(0,z) = 0.

There exists  $\zeta:[0,1]\to\mathbb{C}^r$  such that  $H(s,\zeta(s))=0$  and  $\zeta(0)=z$ . Assume it is unique.

**Output:** A tubular neighborhood isolating  $\zeta$ .

We can to that for every solution at s = 0.



# **Certified homotopy continuation**

**Input:**  $H: [0,1] \times \mathbb{C}^r \to \mathbb{C}^r$  and  $z \in \mathbb{C}^r$  such that H(0,z) = 0.

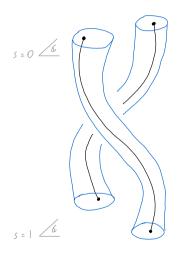
There exists  $\zeta:[0,1]\to\mathbb{C}^r$  such that  $H(s,\zeta(s))=0$  and  $\zeta(0)=z$ . Assume it is unique.

**Output:** A tubular neighborhood isolating  $\zeta$ .

We can to that for every solution at s = 0.

# **Application**

Recall  $g \in \mathbb{C}[t,z]$  and  $\gamma:[0,1] \to \mathbb{C} \setminus \Sigma$  from first slide. Apply certified homotopy continuation to  $H(s,z) = g(\gamma(s),z)$ .



We now assume  $\zeta = (\zeta_1, \dots, \zeta_n) : [0,1] \to OC_n$  inducing a loop in  $C_n$  i.e.  $\Phi(\zeta(0)) = \Phi(\zeta(1))$ .

#### Goal

**Input :**  $\zeta$  (n disjoint tubular neighborhoods around  $\zeta_1, \ldots, \zeta_n$ ).

**Output :** A decomposition in standard generators of the braid induced by  $\zeta_1, \ldots, \zeta_n$ .

We now assume  $\zeta = (\zeta_1, \dots, \zeta_n) : [0,1] \to OC_n$  inducing a loop in  $C_n$  i.e.  $\Phi(\zeta(0)) = \Phi(\zeta(1))$ .

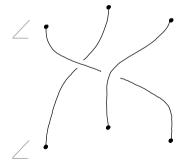
#### Goal

**Input**:  $\zeta$  (*n* disjoint tubular neighborhoods around  $\zeta_1, \ldots, \zeta_n$ ).

**Output**: A decomposition in standard generators of the braid induced by  $\zeta_1, \ldots, \zeta_n$ .

# **Overall strategy**

. We do not have access to  $\zeta$ , not even to  $\zeta(0)$ .



We now assume  $\zeta = (\zeta_1, \dots, \zeta_n) : [0,1] \to OC_n$  inducing a loop in  $C_n$  i.e.  $\Phi(\zeta(0)) = \Phi(\zeta(1))$ .

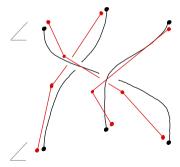
#### Goal

**Input**:  $\zeta$  (*n* disjoint tubular neighborhoods around  $\zeta_1, \ldots, \zeta_n$ ).

**Output**: A decomposition in standard generators of the braid induced by  $\zeta_1, \ldots, \zeta_n$ .

# **Overall strategy**

- We do not have access to  $\zeta$ , not even to  $\zeta(0)$ .
- 1) Find a path  $\tilde{\zeta}$  that has same associated braid.



We now assume  $\zeta = (\zeta_1, \dots, \zeta_n) : [0,1] \to OC_n$  inducing a loop in  $C_n$  i.e.  $\Phi(\zeta(0)) = \Phi(\zeta(1))$ .

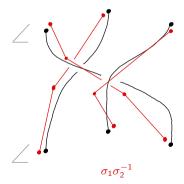
#### Goal

**Input**:  $\zeta$  (*n* disjoint tubular neighborhoods around  $\zeta_1, \ldots, \zeta_n$ ).

**Output**: A decomposition in standard generators of the braid induced by  $\zeta_1, \ldots, \zeta_n$ .

# **Overall strategy**

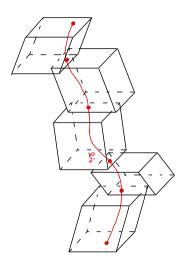
- We do not have access to  $\zeta$ , not even to  $\zeta(0)$ .
- 1) Find a path  $\tilde{\zeta}$  that has same associated braid.
- 2) Decompose  $\tilde{\zeta}$ .



# Related work

# SIROCCO [Marco-Buzunariz and Rodríguez, 2016]

- Tubular neighborhoods are piecewise linear.
- For each strand  $\zeta_i$ , computes a piecewise linear path in the tube.
- "Intuitive" (I non generic cases) algorithm on the braid with piecewise linear strands.



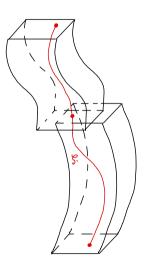
# Related work

# SIROCCO [Marco-Buzunariz and Rodríguez, 2016]

- Tubular neighborhoods are piecewise linear.
- For each strand  $\zeta_i$ , computes a piecewise linear path in the tube.
- "Intuitive" (I non generic cases) algorithm on the braid with piecewise linear strands.

# Algpath [G. and Lairez, 2024]

- Tubular neighborhoods are piecewise cubic.
- Faster than SIROCCO.
- Finding a piecewise linear path in the tube requires additional work.

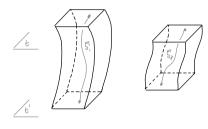


### Data structure

# Strand separation interface

We assume a function  $\operatorname{sep}(i,j,t)$  that returns  $t' \in (t,1]$  and a symbol in  $\star \in \{\rightarrow,\leftarrow,\rightarrow,\leftarrow\}$ , such that for all  $s \in [t,t']$ ,

- $\operatorname{Re}(\zeta_i(s)) < \operatorname{Re}(\zeta_i(s))$  if  $\star = \rightarrow$ ,
- $\operatorname{Re}(\zeta_i(s)) > \operatorname{Re}(\zeta_i(s))$  if  $\star = \leftarrow$ ,
- $\operatorname{Im}(\zeta_i(s)) < \operatorname{Im}(\zeta_j(s))$  if  $\star = \rightarrow$ ,
- $\operatorname{Im}(\zeta_i(s)) > \operatorname{Im}(\zeta_j(s))$  if  $\star = \leftarrow$ .



$$\operatorname{sep}(i,j,t) = (t', \rightarrow)$$

# Cells

Recall: 
$$OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$$

#### Definition

A cell is a pair c=(R,I) of relations on  $\{1,\ldots,n\}$ . We associate to it a topological space  $|c|\subseteq OC_n$  whose points are  $(x_1,\ldots,x_n)\in OC_n$  such that

- for all  $(i,j) \in R$ ,  $\operatorname{Re}(x_i) < \operatorname{Re}(x_j)$ ,
- for all  $(i,j) \in I$ ,  $\operatorname{Im}(x_i) < \operatorname{Im}(x_j)$ ,

#### **Notation**

- $i \rightarrow_c j \iff (i,j) \in R$
- $i \rightarrow_c j \iff (i,j) \in I$

# Cells

Recall: 
$$OC_n = \{(x_1, \dots, x_n) \in \mathbb{C}^n : \forall i \neq j, x_i \neq x_j\}.$$

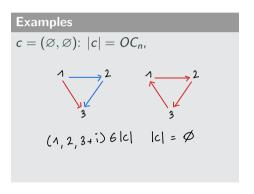
### Definition

A cell is a pair c=(R,I) of relations on  $\{1,\ldots,n\}$ . We associate to it a topological space  $|c|\subseteq OC_n$  whose points are  $(x_1,\ldots,x_n)\in OC_n$  such that

- for all  $(i,j) \in R$ ,  $\operatorname{Re}(x_i) < \operatorname{Re}(x_j)$ ,
- for all  $(i,j) \in I$ ,  $\operatorname{Im}(x_i) < \operatorname{Im}(x_j)$ ,

#### **Notation**

- $i \rightarrow_c j \iff (i,j) \in R$
- $i \rightarrow_c j \iff (i,j) \in I$



## Properties of cells

## **Empty cells**

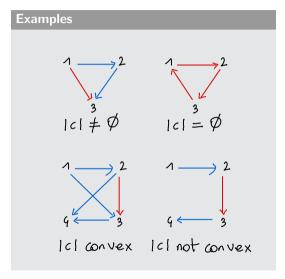
A cell is empty if and only if there is a cycle in R or in I.

### Convex cells

A (non-empty) cell is convex if and only if for all  $i, j \in \{1, \ldots, n\}$ , either  $i \rightarrow *j$  or  $j \rightarrow *i$  or  $i \rightarrow *j$  or  $j \rightarrow *i$ . We call this graph property "monochromatic semi-connectedness" (m.s.c. for short).

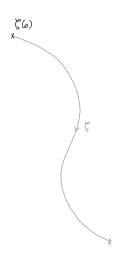
## Intersection of cells

Given c = (R, I) and c' = (R', I') two cells, the space associated to  $(R \cup R', I \cup I')$  is  $|c| \cap |c'|$ .



### Path to cells

**Input:**  $\zeta$  (represented by tubular neighborhoods).

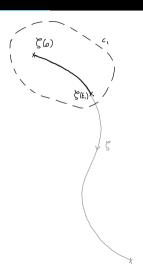


### Path to cells

**Input:**  $\zeta$  (represented by tubular neighborhoods). **Output:** a sequence of convex cells  $c_1, \dots, c_r$  such that there exists  $0 = t_0 < \dots < t_r = 1$  and for any  $s \in [t_{i-1}, t_i], \ \zeta(s) \in c_i$ .

### Idea:

- Start with an initial convex cell c containing  $\zeta(0)$ .
- Associate to each edge a time of validity.
- When a relation expires, update it using sep and repair convexity.
- Repeat.

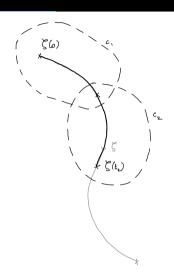


### Path to cells

**Input:**  $\zeta$  (represented by tubular neighborhoods). **Output:** a sequence of convex cells  $c_1, \dots, c_r$  such that there exists  $0 = t_0 < \dots < t_r = 1$  and for any  $s \in [t_{i-1}, t_i]$ ,  $\zeta(s) \in c_i$ .

### Idea:

- Start with an initial convex cell c containing  $\zeta(0)$ .
- Associate to each edge a time of validity.
- When a relation expires, update it using sep and repair convexity.
- Repeat.

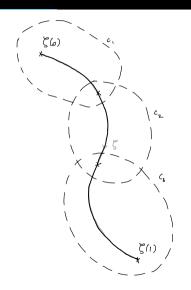


#### Path to cells

**Input:**  $\zeta$  (represented by tubular neighborhoods). **Output:** a sequence of convex cells  $c_1, \dots, c_r$  such that there exists  $0 = t_0 < \dots < t_r = 1$  and for any  $s \in [t_{i-1}, t_i], \ \zeta(s) \in c_i$ .

#### Idea:

- Start with an initial convex cell c containing  $\zeta(0)$ .
- Associate to each edge a time of validity.
- When a relation expires, update it using sep and repair convexity.
- Repeat.



# Step 2: linearize $\zeta$

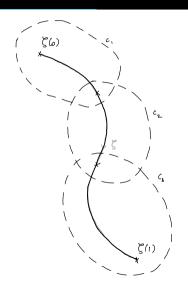
## **Definition**

Let  $\pi, \varphi \in \mathfrak{S}_n$ . We define  $p_{\pi,\varphi} = (\pi(1) + \mathbf{i}\varphi(1), \cdots, \pi(n) + \mathbf{i}\varphi(n)) \in \mathit{OC}_n$ .

$$TT = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$$

$$P_{T, e} : \bullet_{2}$$



# Step 2: linearize $\zeta$

### **Definition**

Let  $\pi, \varphi \in \mathfrak{S}_n$ . We define  $p_{\pi,\varphi} = (\pi(1) + \mathbf{i}\varphi(1), \cdots, \pi(n) + \mathbf{i}\varphi(n)) \in OC_n$ .

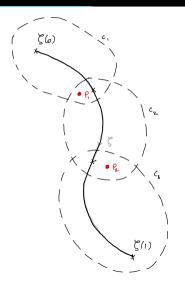
$$TT = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 5 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$$

$$P_{T, e} : \bullet_{2}$$

## Linearization of $\zeta$

For each  $c_i, c_{i+1}$ , we compute  $\pi, \varphi$  such that  $p_i = p_{\pi, \varphi}$  lies in the intersection  $c_i \cap c_{i+1}$  (Hint: total order extending R and I).



# Step 2: linearize $\zeta$

### **Definition**

Let  $\pi, \varphi \in \mathfrak{S}_n$ . We define  $p_{\pi,\varphi} = (\pi(1) + \mathbf{i}\varphi(1), \cdots, \pi(n) + \mathbf{i}\varphi(n)) \in OC_n$ .

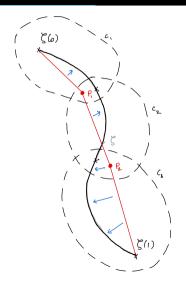
$$TT = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$E = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$$

$$P_{TT}, E :$$
2

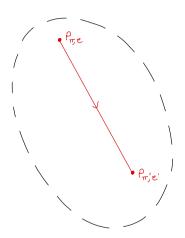
## Linearization of $\zeta$

For each  $c_i, c_{i+1}$ , we compute  $\pi, \varphi$  such that  $p_i = p_{\pi, \varphi}$  lies in the intersection  $c_i \cap c_{i+1}$  (Hint: total order extending R and I). The linear interpolation of the  $p_i$  is homotopic to  $\zeta$ . Why? cells are convex!



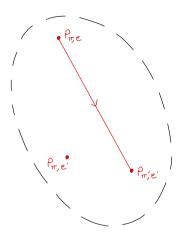
### Reduction

• Computing the braid associated to the whole linearization or to each piece and concatenating the results is equivalent.



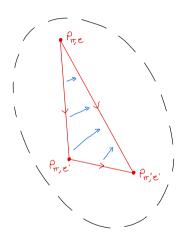
#### Reduction

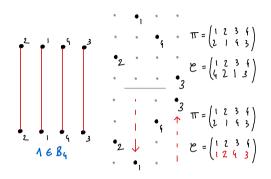
- Computing the braid associated to the whole linearization or to each piece and concatenating the results is equivalent.
- Assume  $p_{\pi,\varphi}$  and  $p_{\pi',\varphi'}$  both lie in a convex cell c=(R,I). It means that  $\pi,\pi'$  extend R and  $\varphi,\varphi'$  extend I. So  $p_{\pi,\varphi'}$  also lies in c!

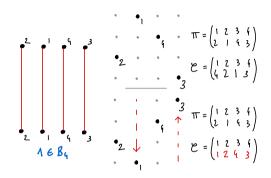


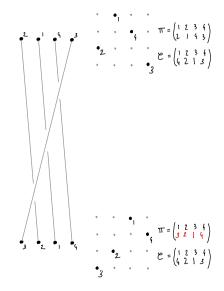
#### Reduction

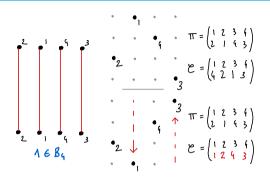
- Computing the braid associated to the whole linearization or to each piece and concatenating the results is equivalent.
- Assume  $p_{\pi,\varphi}$  and  $p_{\pi',\varphi'}$  both lie in a convex cell c=(R,I). It means that  $\pi,\pi'$  extend R and  $\varphi,\varphi'$  extend I. So  $p_{\pi,\varphi'}$  also lies in c!
- We compute the braid of  $p_{\pi,\varphi} o p_{\pi,\varphi'}$  then the braid of  $p_{\pi,\varphi'} o p_{\pi',\varphi'}$ .

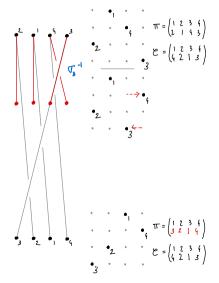


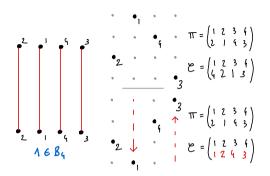


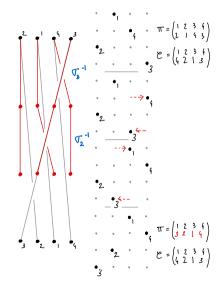


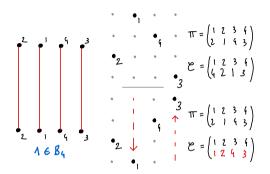


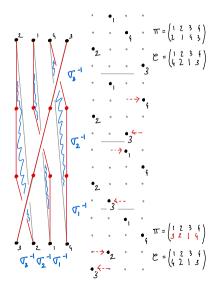


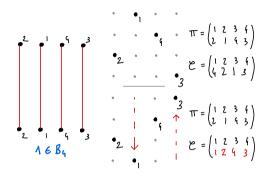




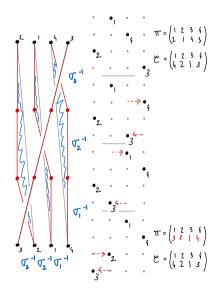








 $p_{\pi,\varphi} o p_{\pi,\varphi'}$ : trivial braid.  $p_{\pi,\varphi'} o p_{\pi',\varphi'}$ : Decompose  $\pi'\pi^{-1} = s_{i_1} \cdots s_{i_r}$  in elementary transpositions. Output  $\sigma_{i_1}^{\varepsilon_1} \cdots \sigma_{i_r}^{\varepsilon_r}$  with  $\varepsilon_1, \cdots, \varepsilon_r \in \{\pm 1\}$  computed using  $\varphi'$ .



## Conclusion

~/2025/code/braid\_group cargo run --release

Finished `release` profile [optimized] target(s) in 0.08s

Running `target/release/braid\_group`

05 7 01 1 02 5 02 9 04 7 05 1 05 5 06 1 06 3 08 3 03 05 04 1 03 1 03 5 00 1 1 01 00 03 7 07 3 09 7 09 8 02 7 04 9 08 7 09 7 1 05 9 01 5 02 03 1 1 09 6 1 07 7 09 2  $\frac{1}{9}$   $\frac{1}$  $\frac{1}{1093023016}$  $\frac{1}{082}$   $\frac{1}{082}$   $\frac{1}{082}$   $\frac{1}{092}$   $\frac{1}$  $92^{-1}991078^{-1}013^{-1}014070^{-1}069070059^{-1}021083079^{-1}080^{-1}092071015023^{-1}017^{-1}09^{-1}018010019081^{-1}018093092^{-1}$  $017084083^{-1}082^{-1}083^{-1}084^{-1}016072079^{-1}012^{-1}076^{-1}013085^{-1}073086^{-1}036074081087^{-1}088^{-1}015089^{-1}0140870130$  $12017^{-1}018028090^{-1}091^{-1}078092^{-1}093^{-1}094^{-1}095^{-1}098097092^{-1}096^{-1}097^{-1}024098^{-1}094075029^{-1}015076088087^{-1}$  $\frac{1}{9}$   $\frac{1}$  $^{1}$  03  $^{2}$   $^{1}$  03  $^{2}$  06  $^{2}$  06  $^{3}$  06  $^{2}$  06  $^{3}$   $^{1}$  05  $^{2}$  06  $^{3}$  06  $^{3}$  07  $^{1}$  07  $^{2}$  07  $^{3}$  07  $^{3}$  07  $^{3}$  07  $^{4}$  07  $^{3}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $^{4}$  07  $053644^{-1}072^{-1}073645026025^{-1}084^{-1}074^{-1}075086076^{-1}077052051^{-1}038085050049^{-1}024^{-1}023046^{-1}047078^{-1}07909$  $800084048078082^{-1}080030^{-1}034052^{-1}074076090^{-1}033^{-1}024036^{-1}079078^{-1}04^{-1}021046047070^{-1}046^{-1}021046047070^{-1}046^{-1}021046047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}02104040404704047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}021040404047070^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046^{-1}046$ 6 09 2 06 02 3 05 4 06 6  $^{-1}$  08 8  $^{-1}$  09 4  $^{-1}$  02 03 2  $^{-1}$  04 9 05 0  $^{-1}$  03 8  $^{-1}$  01 0 02 6  $^{-1}$  05 6  $^{-1}$  05 8  $^{-1}$  07 2 04 4 05 1  $^{-1}$  08 5 06 0  $^{-1}$  05 2 01 2 09 6  $^{-1}$  $645644^{-1}624623^{-1}617653654^{-1}623624^{-1}677676^{-1}686675684^{-1}642643642^{-1}655^{-1}656662^{-1}674^{-1}625^{-1}625675672^{-1}66675684^{-1}642643642^{-1}655^{-1}656662^{-1}674^{-1}625^{-1}6256773672^{-1}66675684^{-1}6426643642^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}64266675684^{-1}6466676687^{-1}64666767687^{-1}64666767^{-1}6466767^{-1}646677^{-1}646677^{-1}646677^{-1}646677^{-1}646677^{-1}646677^{-1}646677^{-1}646677^{-1}646677^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}6467^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}64667^{-1}6467^{-1}6467^{-1}6467^{-1}6467^{-1}6467^{-1}6467^{-1}6467^{-1}6467^{-1}6467^{-1}6467^{-1}$  $57^{-1}058038060061060^{-1}059^{-1}022049^{-1}041^{-1}014^{-1}015^{-1}014023^{-1}060061^{-1}040013012^{-1}085^{-1}062039038^{-1}074073^{-1}$ 03.7 - 06.0 - 063.064 - 036.035.034 - 081 - 065.072.026 - 072.026 - 072.083.024.025 - 072.6082 - 084.073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 073.074 - 07333 <sup>-1</sup> 02 3 02 2 <sup>-1</sup> 01 9 <sup>-1</sup> 02 0 <sup>-1</sup> 01 9 07 09 6 03 1 <sup>-1</sup> 09 5 09 4 09 3 09 2 08 5 03 0 06 7 <sup>-1</sup> 06 8 08 <sup>-1</sup> 07 1 <sup>-1</sup> 02 0 09 1 09 0 07 5 <sup>-1</sup> 07 6 07 5 08 7 07 7 <sup>-1</sup> 0  $88076^{-1}089088087086085081047^{-1}098^{-1}097^{-1}029^{-1}028096^{-1}084094095^{-1}094^{-1}093^{-1}083082081091092^{-1}091^{-1}099^{-1}089088087088087088081091092^{-1}091^{-1}099^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091^{-1}091$  $^{1}$ 078088089 $^{-1}$ 088 $^{-1}$ 079 $^{-1}$ 087 $^{-1}$ 082 $^{-1}$ 086 $^{-1}$ 0102059 $^{-1}$ 060077018017 $^{-1}$ 085 $^{-1}$ 084 $^{-1}$ 083 $^{-1}$ 082 $^{-1}$ 078 $^{-1}$ 0304088080089 $^{-1}$  $\sigma_{18}^{-1}\sigma_{19}^{-1}\sigma_{18}\sigma_{19}^{-1}\sigma_{19}\sigma_{69}^{-1}\sigma_{79}\sigma_{84}\sigma_{16}^{-1}\sigma_{78}\sigma_{96}\sigma_{77}\sigma_{70}\sigma_{81}^{-1}\sigma_{5}\sigma_{6}\sigma_{80}^{-1}\sigma_{70}\sigma_{80}^{-1}\sigma_{11}^{-1}\sigma_{94}^{-1}\sigma_{79}^{-1}\sigma_{75}^{-1}\sigma_{76}\sigma_{75}\sigma_{78}^{-1}\sigma_{17}^{-1}\sigma_{79}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1}\sigma_{75}^{-1$  $^{1}$   $^{0}$   $^{1}$   $^{0}$   $^{1}$   $^{0}$   $^{1}$   $^{0}$   $^{1}$   $^{0}$   $^{1}$   $^{0}$   $^{0}$   $^{1}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{1}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $^{0}$   $5^{-1}$   $674^{-1}$   $69^{-1}$   $673^{-1}$   $6723^{-1}$   $6723^{-1}$   $6723^{-1}$   $6723^{-1}$   $6723^{-1}$   $6723^{-1}$   $6723^{-1}$   $6723^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $6733^{-1}$   $\sigma_{11}^{-1}\sigma_{16}\sigma_{70}^{-1}\sigma_{17}\sigma_{88}^{-1}\sigma_{95}\sigma_{96}^{-1}\sigma_{11}^{-1}\sigma_{12}^{-1}\sigma_{15}^{-1}\sigma_{27}^{-1}\sigma_{13}^{-1}\sigma_{14}^{-1}\sigma_{15}^{-1}\sigma_{16}^{-1}\sigma_{94}\sigma_{95}^{-1}\sigma_{18}\sigma_{19}\sigma_{86}\sigma_{15}^{-1}\sigma_{26}\sigma_{68}\sigma_{67}^{-1}\sigma_{18}\sigma_{19}^{-1}\sigma_{18}\sigma_{19}^{-1}\sigma_{18}^{-1}\sigma_{18}\sigma_{19}^{-1}\sigma_{18}^{-1}\sigma_{18}\sigma_{19}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{-1}\sigma_{18}^{$  $\sigma_{11}$   $^{-1}\sigma_{8}$   $^{-1}\sigma_{13}$   $\sigma_{14}$   $^{-1}\sigma_{68}$   $^{-1}\sigma_{87}$   $^{-1}\sigma_{33}$   $\sigma_{17}$   $^{-1}\sigma_{86}$   $^{-1}\sigma_{18}$   $^{-1}\sigma_{82}$   $^{-1}\sigma_{83}$   $^{-1}\sigma_{17}$   $^{-1}\sigma_{17}$   $^{-1}\sigma_{18}$   $^{$  $92^{-1}$ 088021 $^{-1}$ 089 $^{-1}$ 023020021022021020087088 $^{-1}$ 023019 $^{-1}$ 060 $^{-1}$ 0721 $^{-1}$ 0722 $^{-1}$ 05 $^{-1}$ 04093 $^{-1}$ 0720 $^{-1}$ 094065  $\sigma_{13}\sigma_{95}\sigma_{96}^{-1}\sigma_{2}\sigma_{3}\sigma_{2}^{-1}\sigma_{1}\sigma_{0}^{-1}\sigma_{1}^{-1}\sigma_{3}^{-1}\sigma_{7}^{-1}\sigma_{9}^{-1}\sigma_{13}^{-1}\sigma_{17}^{-1}\sigma_{19}^{-1}\sigma_{21}^{-1}\sigma_{23}^{-1}\sigma_{33}^{-1}\sigma_{35}^{-1}\sigma_{39}^{-1}\sigma_{43}^{-1}\sigma_{45}^{-1}\sigma_{53}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1}\sigma_{63}^{-1$  $\frac{1}{1000}$ 

