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Motivation

Ct

Cz

b

roots of Fb

Setup

• Let g ∈ C[t, z ] (n = degz(g)),

• define Ft(z) = g(t, z).

• Let b ∈ C\Σ be a base point,

• let γ : [0, 1]→ C\Σ be a loop starting

at b.

• The displacement of all roots of Ft

when t moves along γ defines a braid.

Algorithmic goal

Input: g , γ

Output: the associated braid in terms of

Artin’s generators
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Configurations

Ordered configurations

OCn = {(x1, . . . , xn) ∈ Cn : ∀i ̸= j , xi ̸= xj}.
Configurations

Cn = {subsets of size n in C}.

“Forget order” projection

Φ : OCn → Cn

(x1, . . . , xn) 7→ {x1, . . . , xn}.
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Braid group

Braid

Homotopy class of a path β : [0, 1]→ Cn such

that β(0) = β(1) = {1, . . . , n}.

In practice, we will manipulate paths in OCn.

Braid group Bn

id: class of the constant path equal to {1, . . . , n}.
Law: [β1][β2] := [β1 · β2].

Rk: this is π1(Cn, {1, . . . , n}).
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Artin’s theorem

σi ∈ Bn

Theorem [Artin, 1947]

The σi ’s generate Bn (+ explicit relations).

σ4σ
−1
1 σ−1

2 σ−1
3 σ3σ1σ2σ

−1
3
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Main tool

Certified homotopy continuation

Input: H : [0, 1]× Cr → Cr and z ∈ Cr such that

H(0, z) = 0.

There exists ζ : [0, 1]→ Cr such that H(s, ζ(s)) = 0

and ζ(0) = z. Assume it is unique.

Output: A tubular neighborhood isolating ζ.

We can to that for every solution at s = 0.

Application

Recall g ∈ C[t, z ] and γ : [0, 1]→ C\Σ from first slide.

Apply certified homotopy continuation to

H(s, z) = g(γ(s), z).
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Today’s goal

We now assume ζ = (ζ1, . . . , ζn) : [0, 1]→ OCn inducing a loop in Cn i.e. Φ(ζ(0)) = Φ(ζ(1)).

Goal

Input : ζ (n disjoint tubular neighborhoods around ζ1, . . . , ζn).

Output : A decomposition in standard generators of the braid induced by ζ1, . . . , ζn.

Overall strategy

, We do not have access to ζ, not even to ζ(0).

1) Find a path ζ̃ that has same associated braid.

2) Decompose ζ̃.
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Related work

SIROCCO [Marco-Buzunariz and Rodŕıguez, 2016]

• Tubular neighborhoods are piecewise linear.

• For each strand ζi , computes a piecewise linear path

in the tube.

• “Intuitive” (, non generic cases) algorithm on the

braid with piecewise linear strands.

Algpath [G. and Lairez, 2024]

• Tubular neighborhoods are piecewise cubic.

� Faster than SIROCCO.

, Finding a piecewise linear path in the tube requires

additional work.
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Data structure

Strand separation interface

We assume a function sep(i , j , t) that returns

t ′ ∈ (t, 1] and a symbol in ⋆ ∈ {→,←,→,←},
such that for all s ∈ [t, t ′],

• Re(ζi (s)) < Re(ζj(s)) if ⋆ =→,

• Re(ζi (s)) > Re(ζj(s)) if ⋆ =←,

• Im(ζi (s)) < Im(ζj(s)) if ⋆ =→,

• Im(ζi (s)) > Im(ζj(s)) if ⋆ =←.
sep(i , j , t) = (t′,→)
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Cells

Recall: OCn = {(x1, . . . , xn) ∈ Cn : ∀i ̸= j , xi ̸= xj}.

Definition

A cell is a pair c = (R, I ) of relations on {1, . . . , n}.
We associate to it a topological space |c | ⊆ OCn

whose points are (x1, . . . , xn) ∈ OCn such that

• for all (i , j) ∈ R, Re(xi ) < Re(xj),

• for all (i , j) ∈ I , Im(xi ) < Im(xj),

Notation

• i→c j ⇐⇒ (i , j) ∈ R

• i→c j ⇐⇒ (i , j) ∈ I
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Notation

• i→c j ⇐⇒ (i , j) ∈ R

• i→c j ⇐⇒ (i , j) ∈ I

Examples

c = (∅,∅): |c | = OCn,
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Properties of cells

Empty cells

A cell is empty if and only if there is a cycle

in R or in I .

Convex cells

A (non-empty) cell is convex if and only if for

all i , j ∈ {1, . . . , n}, either i→∗j or j→∗i or

i→∗j or j→∗i . We call this graph property

“monochromatic semi-connectedness” (m.s.c.

for short).

Intersection of cells

Given c = (R, I ) and c ′ = (R ′, I ′) two cells,

the space associated to (R ∪ R ′, I ∪ I ′) is

|c | ∩ |c ′|.

Examples
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Step 1: compute a sequence of cells

Path to cells

Input: ζ (represented by tubular neighborhoods).

Output: a sequence of convex cells c1, · · · , cr such

that there exists 0 = t0 < · · · < tr = 1 and for any

s ∈ [ti−1, ti ], ζ(s) ∈ ci .

Idea:

• Start with an initial convex cell c containing ζ(0).

• Associate to each edge a time of validity.

• When a relation expires, update it using sep and

repair convexity.

• Repeat.
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Step 2: linearize ζ

Definition

Let π, φ ∈ Sn. We define

pπ,φ = (π(1) + iφ(1), · · · , π(n) + iφ(n)) ∈ OCn.

Linearization of ζ

For each ci , ci+1, we compute π, φ such that pi = pπ,φ
lies in the intersection ci ∩ ci+1 (Hint: total order

extending R and I ).

The linear interpolation of the pi
is homotopic to ζ. Why? cells are convex!
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Step 3: decomposition of the linearization

Reduction

• Computing the braid associated to the whole

linearization or to each piece and concatenating

the results is equivalent.

• Assume pπ,φ and pπ′,φ′ both lie in a convex cell

c = (R, I ). It means that π, π′ extend R and

φ,φ′ extend I . So pπ,φ′ also lies in c!

• We compute the braid of pπ,φ → pπ,φ′ then the

braid of pπ,φ′ → pπ′,φ′ .
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Step 3: decomposition of the linearization

pπ,φ → pπ,φ′ : trivial braid.

pπ,φ′ → pπ′,φ′ : Decompose π′π−1 = si1 · · · sir
in elementary transpositions. Output σε1

i1
· · ·σεr

ir

with ε1, · · · , εr ∈ {±1} computed using φ′.
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Conclusion


