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1. Introduction
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Deep Learning

Given a training set , with  an observation and  , we want 
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𝒟 = {(xi, yi)}N
i=1 xi ∈ Rd yi ∈ 𝒴 = {0,…, J}
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Given a training set , with  an observation and  , we want 
to learn: 

Neural network:  
A parametrized function (neural network) , indexed by some parameters  
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We want to find the optimal parameters , which minimise the empirical risk: 

 

Where  is a cost function such as a mean squared error or cross-entropy.
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Gradient-based methods: back-propagation
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Universal approximation theorem 
Neural networks with a given structure can, in principle, approximate any continuous 
function to any desired degree of accuracy



Introduction
Deep Unsupervised Learning
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Introduction
Deep Unsupervised Learning

Given a training set , with  an observation 

Neural network: a parametrized function , indexed by some 
parameters . 

Optimization:  
We want to find the optimal parameters , which minimise the empirical risk: 

𝒟 = {xi}N
i=1 xi ∈ Rd

fθ : Rd → Rp typically with d > p
θ ∈ Θ ⊂ Rb

θ

̂θ ∈ arg minθ∈Θ MN(θ) with MN :=
1
N

ℒ( fθ(xi))
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Introduction
Self-supervised learning

Transfer Learning: transferring knowledge (e.g., learned weights: ) from a source domain to improve 
performance in a target domain and task 

fθ
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Dataset sizes: N > M
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Dimensionality reduction



Introduction
Self-supervised learning

Transfer Learning: transferring knowledge (e.g., learned weights: ) from a source domain to improve 
performance in a target domain and task 

 

How to get ‘good’ and ‘general’ representations without knowing the downstream task(s) ?

fθ
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Introduction
Self-supervised learning

Self-supervised learning: paradigm to learn meaningful data representations without relying on 
annotations, by leveraging supervision from the raw data itself
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Invariance to a given class of transforms



Introduction
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t, t′￼ ∼ T
x = t(i) and x′￼ = t′￼(i)
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i ∈ Rw×h

t, t′￼ ∼ T
x = t(i) and x′￼ = t′￼(i)
y = fθ(x) and y′￼ = fθ(x′￼)
z = hϕ(y) and z′￼ = hϕ(y′￼)
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Joint-Embedding Self-Supervised Learning
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Introduction
Joint-Embedding Self-Supervised Learning
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In practise: 
- we may consider  
- can be viewed as a dimensionality 
reduction problem as  

fθ and hϕ as one network

D < H × W



Introduction
Joint-Embedding Self-Supervised Learning 

The fundamental challenge in JE-SSL:  
preventing collapse either representational or dimensional

23

Figure: Illustration of collapse. 



Introduction
Joint-Embedding Self-Supervised Learning 

i. Contrastive approaches, e.g, SimCLR [1] 
encourage embeddings of different views of the same image to be similar while pushing away 
embeddings of different images.  

ii. Asymmetric architecture, e.g., BYOL [2] 

iii. Covariance-based approaches, e.g., VICReg [3]  
enforce embedding decorrelation by promoting an identity covariance matrix  
 

[1] A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020 
[2] Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020 
[3] VICReg: Variance-Invariance-Covariance Regularization For Self-Supervised Learning, ICLR 2022
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Introduction
Joint-Embedding Self-Supervised Learning

Fang et al. [1] formalized desirable properties of JE-SSL: 

1. Mitigating dimensional collapse: encourage the embeddings to span the entire space 

2. Promoting sample uniformity: ensure the embeddings are evenly distributed across the 
representation space

[1] Rethinking uniformity in self-supervised learning, Fang et al, ICLR 2024
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How? Maximizing the length of the Minimum Spanning Tree



Introduction
Minimum spanning tree

Definition: 
Given a point cloud  in a Euclidean space, a spanning tree (ST) of  is an undirected graph 

 with the vertex set  and edge set  such that  is connected without cycles. 
Z Z

G = (V, E) V = Z E ⊂ V × V G
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A MST(Z), is an ST of Z that minimises length .
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The MST also relates to the persistence in degree 0 of the Rips filtration. 
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The MST also relates to the persistence in degree 0 of the Rips filtration. 
Specifically, there is a bijection between the edges of the minimal spanning tree of a finite metric space 

 and the points in the persistence diagram  obtained from the Rips filtration.x = {x1, …, xn} PH0(x)



Introduction 
Minimum spanning tree
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Figure:  Example of MST in 2-d
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Minimum spanning tree

34

Figure:  Example of MST in 2-d



2. Background



Background
Minimum spanning tree and dimension estimation

Steele [1] studied the length of the minimum spanning tree of random Euclidean spaces. Let  
be an i.i.d sample drawn from a probability measure  with compact support on . For 

, Theorem 1 [1] controls the growth rate of the length of the MST( ) as follows: 

 

The asymptotic rate allows to derive several estimators of intrinsic dimension

En
n− PX Rd

d ≥ 2 Xn

E(MST(Xn) ∼ Cn(d−1)/d almost surely, as n → ∞

[1] Growth rates of euclidean minimal spanning trees with power weighted edges, Steele, 1988
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Background
Minimum spanning tree and persistence

Persistence provides a mathematical framework to optimize the length of the MST [1]:  

 

Each pair of points forming an edge in the MST exerts a repulsive force on the other 
during optimization. 

∀x ∈ X, ∇x E(MST(X)) = ∑
(x, z) edge
of MST(X)

∇x x − z
2

= ∑
(x, z) edge
of MST(X)

x − z −1
2

(x − z) .

[1] Optimising persistence homology-based functions, Carrière et al, ICML 2021
37



3. T-REG: Minimum Spanning 
Tree based regularization



T-REG

Given, , the MST length is defined as:  

 

Z = {z0, …, zn} ∈ ℝd

ℒE = −
1
n

E(MST(Z))
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T-REG

Given, , the MST length is defined as:  

 

The soft-sphere constraint is given by:  

 

Z = {z0, …, zn} ∈ ℝd

ℒE = −
1
n

E(MST(Z))

ℒS =
1
n ∑

i

( | |zi | |2 − 1)2
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T-REG

Given, , the MST length is defined as:  

 

The soft-sphere constraint is given by:  

 

The overall loss is defined as:   
(with  are hyper-parameters)

Z = {z0, …, zn} ∈ ℝd

ℒE = −
1
n

E(MST(Z))

ℒS =
1
n ∑

i

( | |zi | |2 − 1)2

ℒT-REG = γ ℒE + λ ℒS
γ, λ
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T-REG

The overall loss is defined as:  ℒT-REG = γ ℒE + λ ℒS
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3. T-REG: Minimum Spanning Tree  
based regularization
Theoretical analysis
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T-REG
Theoretical analysis

Asymptotic behavior on large samples ( ): 

Derived from Steele [1], let  be an i.i.d sample drawn from a probability measure  with compact 
support on .  
For , Theorem 1 [1] controls the growth rate of the length of the MST( ) as follows: 

n > d + 1

En n− PX
Rd

d ≥ 2 Xn

E(MST(Xn) ∼ Cn(d−1)/d almost surely, as n → ∞

[1] Growth rates of euclidean minimal spanning trees with power weighted edges, Steele, 1988
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T-REG
Theoretical analysis

Asymptotic behavior on large samples ( ):  
We fix a compact Riemannian -manifold, , equipped with the -dimensional Hausdorff measure .

n > d + 1
d ℳ d μ

[1] Determining Intrinsic Dimension and Entropy of High-Dimensional Shape Spaces. Costa et al, 2006 
[2] Shannon entropy, Renyi entropy, and information. Bromiley et al. 2004 
[3] Maximum entropy autoregressive conditional heteroskedasticity model. Park et al, 2009

46

Theorem 4.4 [1]: Let  be an iid -sample of a probability measure on  with density  w.r.t. . 
Then, there exists a constant  independent of  and of  such that: 

Xn n ℳ fX μ
fX ℳ

n(d−1)/d ⋅ E(MST(Xn)
n→∞

C′￼∫ f
d − 1

d dμ
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Theorem 4.4 [1]: Let  be an iid -sample of a probability measure on  with density  w.r.t. . 
Then, there exists a constant  independent of  and of  such that: 

Xn n ℳ fX μ
fX ℳ

n(d−1)/d ⋅ E(MST(Xn)
n→∞

C′￼∫ f
d − 1

d dμ

The limit is related to the intrinsic Rényi -entropy which is known to converge to the Shannon 
entropy as [2]. The Shannon entropy, in turn, achieves its maximum at the uniform 
distribution on compact sets [3].

d
d − 1

d − 1
d

→ 1

Asymptotic behavior on large samples ( ):  
We fix a compact Riemannian -manifold, , equipped with the -dimensional Hausdorff measure .

n > d + 1
d ℳ d μ



T-REG
Theoretical analysis

Behaviour on small samples ( , e.g. batch sizes are often smaller than or comparable to the 
ambient dimension):

n ≤ d + 1

48



T-REG
Theoretical analysis

Behaviour on small samples ( , e.g. batch sizes are often smaller than or comparable to the ambient dimension): 
To account for the effect of the soft sphere constraint, we assume the points of X lie inside some fixed closed Euclidean -ball 

 of radius r centered at the origin

n ≤ d + 1
d

B

49

Theorem 4.1: 

Under the above conditions, the maximum of the , over the point sets  of fixed 
cardinality  is attained when the points of  lie on the sphere , at the vertices of a regular 
-simplex that has  as its smallest circumscribing sphere. 

E(MST(Z)) X ⊂ B
n X S = ∂B (n − 1)

S
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Theoretical analysis

Behaviour on small samples ( , e.g. batch sizes are often smaller than or comparable to the ambient dimension): 
In order to account for the effect of the soft sphere constraint, we assume the points of X lie inside some fixed closed 
Euclidean -ball  of radius r centered at the origin
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Theorem 4.1: 

Under the above conditions, the maximum of the , over the point sets  of fixed 
cardinality  is attained when the points of  lie on the sphere , at the vertices of a regular 
-simplex that has  as its smallest circumscribing sphere. 

E(MST(Z)) X ⊂ B
n X S = ∂B (n − 1)

S

Behavior of T-REG: 

- First,  in  expands the point cloud until the sphere constraint term  becomes the 
dominating term  

- Then, the points stop expanding and start spreading themselves out uniformly along the sphere of 
directions. 

ℒE ℒT-REG ℒS



3. T-REG: Minimum Spanning Tree  
based regularization
Empirical analysis
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T-REG
Empirical analysis, promoting sample uniformity

Set-up: We apply T-REG alone to optimize the positions of a given point cloud, and we analyze its 
behavior when .n > d + 1
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T-REG
Empirical analysis, promoting sample uniformity
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After optimization with T-REG, the distribution becomes almost a Dirac slightly below 0, which indicates 
that the configuration of the points is close to that of the vertices of the regular simplex.



4. T-REGS: T-REG for Self-
Supervised Learning



T-REGS
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T-REGS

ℒ(Z, Z′￼) = β ℒSSL(Z, Z′￼) + γ ℒE(Z) + λ ℒS(Z) + γ ℒE(Z′￼) + λ ℒS(Z′￼)
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T-REGS: T-REG for Self-supervised learning
Evaluation on Standard SSL benchmark
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T-REGS
Evaluation on standard SSL Benchmark
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On CIFAR-10/100.  
T-REGS demonstrate strong standalone performances.



T-REGS
Evaluation on standard SSL Benchmark
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On CIFAR-10/100.  
Using T-REGS as an auxiliary loss consistently improves performance over the respective baselines, 
and over variants that use  or  as additional regularization terms.ℒu 𝒲2



T-REGS
Evaluation on standard SSL Benchmark
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On ImageNet-100/1k.  
T-REGS is competitive with method that use the same number of views.



T-REGS: T-REG for Self-supervised learning
Further applications
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T-REGS
Further applications

Footer
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T-REGS
Further applications

Joint-Embedding multimodal models [1]: 

[1] Learning Transferable Visual Models From Natural Language Supervision, Radford et al, ICML 2021
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T-REGS
Further applications

Joint-Embedding multimodal models [1]:  

Such models preserves distinct subspaces for text and image: the modality gap [2].

[1] Learning Transferable Visual Models From Natural Language Supervision, Radford et al, ICML 2021 
[2] Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning, Liang et al, NeurIPS 2022
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T-REGS
Further applications

We fine-tune CLIP using T-REGS as regularization to the standard CLIP loss to encourage more 
robust and uniformly distributed representations.
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T-REGS: T-REG for Self-supervised learning
Analysis

68



T-REGS
Complexity

The MSTs are computed with Kruskal’s algorithm, whose worst-case time is , with  the batch 
size and  the embedding dimension. 
Empirically T-REGS matches the per-step wall-clock of VICReg and simCLR.

𝒪(B2D) B
D
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T-REGS
Analysis

71

ℒ(Z, Z′￼) = β ℒSSL(Z, Z′￼) + γ ℒE(Z) + λ ℒS(Z) + γ ℒE(Z′￼) + λ ℒS(Z′￼)



Thank you!


