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Introduction
Deep Learning

Given a training set & = {(x, yl-)}f.\; [, wWith x; € R? an observation and y, € ¢ =10,...,J}, we want
to learn:

Neural network:
A parametrized function (neural network) f, : R - %, indexed by some parameters § € ® C R?

Optimization:
We want to find the optimal parameters 6, which minimise the empirical risk:

= arg min

, 1
96 My(0) with M, = fo(yi,fe(xi))

Where & is a cost function such as a mean squared error or cross-entropy.
Universal approximation theorem
Neural networks with a given structure can, in principle, approximate any continuous

function to any desired degree of accuracy
8



Introduction
Deep Unsupervised Learning

Given a training set 9 = {(xl-}ﬁ.\; 1, with x; € R? an observation and y, € ¥ =10,...,J}| we want

to learn:
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Optimization:
We want to find the optimal parameters 6, which minimise the empirical risk:
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Introduction
Deep Unsupervised Learning

Given a training set & = {xi}ﬁ.\; 1, with x; € R¢ an observation

Neural network: a parametrized function f, : R = RP typically withd > p, indexed by some
parameters @ € © C R”.

Optimization:
We want to find the optimal parameters 6, which minimise the empirical risk:

X arg min

1
seoMy(©O)  with My = —L(fx))
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Introduction
Self-supervised learning

Transfer Learning: transferring knowledge (e.g., learned weights: f,) from a source domain to improve
performance in a target domain and task

Source dataset
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Self-supervised learning

Transfer Learning: transferring knowledge (e.g., learned weights: f,) from a source domain to improve
performance in a target domain and task

Source dataset
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Self-supervised learning

Transfer Learning: transferring knowledge (e.g., learned weights: f,) from a source domain to improve
performance in a target domain and task

Source dataset

D= {mi}ile
e D — fi(z;) = L(fy(z;))
e e Dimensionality reduction
Target dataset transfer
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Introduction
Self-supervised learning

Transfer Learning: transferring knowledge (e.g., learned weights: f,) from a source domain to improve
performance in a target domain and task

How to get ‘good’ and ‘general’ representations without knowing the downstream task(s) ?

15



Introduction

Self-supervised learning

Self-supervised learning: paradigm to learn meaningful data representations without relying on
annotations, by leveraging supervision from the raw data itself
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Introduction

Self-supervised learning

Self-supervised learning: paradigm to learn meaningful data representations without relying on
annotations, by leveraging supervision from the raw data itself.

Invariance to a given class of transforms
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Introduction

Joint-Embedding Self-Supervised Learning
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Introduction

Joint-Embedding Self-Supervised Learning

= wah
t,t' ~T
x =t(i)and x" = t'(q)

19



Introduction

Joint-Embedding Self-Supervised Learning
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Introduction

Joint-Embedding Self-Supervised Learning

Transformed Representations Embeddings
Images
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Introduction
Joint-Embedding Self-Supervised Learning

Transformed Representations Embeddings
Images
.
NS
fm
Images sj
X: BXHXW Y: BxL Z: BxD

L ) La(2.2)

I: BxHxQ . A 1
> " — >
T L — —> \97
X’ BXHXW Y’: BxL Z’: BxD
—— : L(Z2Z2°)  enforces view-invariance In practise:

- we may consider fyand hyas one network
- can be viewed as a dimensionality
reduction problem as D < HX W
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Introduction
Joint-Embedding Self-Supervised Learning

The fundamental challenge in JE-SSL:
preventing collapse either representational or dimensional

— @

(a) Representational Collapse (b) Dimensional Collapse

Figure: Illustration of collapse.
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Introduction

Joint-Embedding Self-Supervised Learning

i. Contrastive approaches, e.g, SImCLR |1]
encourage embeddings of different views of the same image to be similar while pushing away
embeddings of different images.

ii. Asymmetric architecture, e.g., BYOL |2]

iii. Covariance-based approaches, e.g., VICReg |3|
enforce embedding decorrelation by promoting an identity covariance matrix

1| A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020
2| Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020

3| VICReg: Variance-Invariance-Covariance Regularization For Self-Supervised Learning, ICLR 2022
24




Introduction

Joint-Embedding Self-Supervised Learning

Fang et al. |1| formalized desirable properties of JE-SSL:
1. Mitigating dimensional collapse: encourage the embeddings to span the entire space

2. Promoting sample uniformity: ensure the embeddings are evenly distributed across the
representation space

|1] Rethinking uniformity in self-supervised learning, Fang et al, ICLR 2024
25
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Introduction

Joint-Embedding Self-Supervised Learning

Fang et al. |1| formalized desirable properties of JE-SSL:
1. Mitigating dimensional collapse: encourage the embeddings to span the entire space

2. Promoting sample uniformity: ensure the embeddings are evenly distributed across the
representation space

How? Maximizing the length of the Minimum Spanning Tree

|1] Rethinking uniformity in self-supervised learning, Fang et al, ICLR 2024
28



Introduction

Minimum spanning tree

Definition:

Given a point cloud Z in a FEuclidean space, a spanning tree (ST) of Z is an undirected graph
G = (V, E) with the vertex set V=7 and edge set E C VX V such that G is connected without cycles.
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Minimum spanning tree

Definition:
Given a point cloud Z in a FEuclidean space, a spanning tree (ST) of Z is an undirected graph
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Introduction

Minimum spanning tree

Definition:
Given a point cloud Z in a FEuclidean space, a spanning tree (ST) of Z is an undirected graph
G = (V, E) with the vertex set V=7 and edge set E C VX V such that G is connected without cycles.

The length of G is:
EG) = ) |lz=21l,

(z,2)EE

A MST(Z), is an ST of Z that minimises length E.

The MST also relates to the persistence in degree 0 of the Rips filtration.
Specifically, there is a bijection between the edges of the minimal spanning tree of a finite metric space
X = {X,...,Xx,} and the points in the persistence diagram PHy(x) obtained from the Rips filtration.
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Introduction

Minimum spanning tree
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Figure: Example of MST in 2-d
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Introduction

Minimum spanning tree

0 1
Figure: Example of MST in 2-d
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Background
Minimum spanning tree and dimension estimation

Steele |1| studied the length of the minimum spanning tree of random Euclidean spaces. Let E,
be an i.i.d n—sample drawn from a probability measure Py with compact support on R¢. For
d > 2, Theorem 1 [1| controls the growth rate of the length of the MST(X,) as follows:

EMST(X,) ~ Cn'@=V4 almost surely, as n — oo

The asymptotic rate allows to derive several estimators of intrinsic dimension

|1] Growth rates of euclidean minimal spanning trees with power weighted edges, Steele, 1988
36



Background
Minimum spanning tree and persistence

Persistence provides a mathematical framework to optimize the length of the MST |1]:

VxeX, V,EMSTX)= ) V.| x-z|,= Y |x-z|, -2.
(x,z) edge (x,z) edge
of MST(X) of MST(X)

Each pair of points forming an edge in the MST exerts a repulsive force on the other
during optimization.

|1] Optimising persistence homology-based functions, Carriére et al, ICML 2021
37
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Tree based regularization




T-REG

Given, Z = {z,,...,z2,} € R? the MST length is defined as:

Pp = %E(MST(Z))
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T-REG

Given, Z = {Zy, ..., 2, ] € R? the MST length is defined as:

Pp = — %E(MST(Z))

Point Cloud optimization with Lg

0.0 1

0 200 400 600 800 1000
[teration



T-REG

Given, Z = {z,,...,z2,} € R? the MST length is defined as:
1
LR =— ;E(MST(Z))

The soft-sphere constraint is given by:

|
Fg=—2 (lzll,=17
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T-REG

Given, Z = {z,,...,z2,} € R? the MST length is defined as:
1
LR =— ;E(MST(Z))

The soft-sphere constraint is given by:
1
Fg=—2 (lzll,=17

The overall loss is defined as: Y ppa =7y L +417L¢
(with y, A are hyper-parameters)

42



T-REG

The overall loss is defined as: X ppa =7 +41Zg

Point Cloud optimization with £1.rec
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based regularization
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T-REG
Theoretical analysis

Asymptotic behavior on large samples (n > d+ 1):

Derived from Steele [1], let E, be an i.i.d n—sample drawn from a probability measure P, with compact

support on RY.
For d > 2, Theorem 1 |1| controls the growth rate of the length of the MST(X,) as follows:

EMST(X)) ~ Cn'4=Dd almost surely, as n — oo

|1] Growth rates of euclidean minimal spanning trees with power weighted edges, Steele, 1988
45



T-REG
Theoretical analysis

Asymptotic behavior on large samples (n > d+ 1):
We fix a compact Riemannian d-manifold, ./, equipped with the d-dimensional Hausdorff measure pu.

Theorem 4.4 [1]: Let X, be an iid n-sample of a probability measure on .# with density f,, w.r.t. u.
Then, there exists a constant independent of fy, and of ./ such that:

nd=Vd . E(MST(X,)) — C’ J Frdu

1| Determining Intrinsic Dimension and Entropy of High-Dimensional Shape Spaces. Costa et al, 2006
2| Shannon entropy, Renyi entropy, and information. Bromiley et al. 2004

3| Maximum entropy autoregressive conditional heteroskedasticity model. Park et al, 2009
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T-REG
Theoretical analysis

Asymptotic behavior on large samples (n > d+ 1):
We fix a compact Riemannian d-manifold, ./, equipped with the d-dimensional Hausdorff measure pu.

Theorem 4.4 [1]: Let X, be an iid n-sample of a probability measure on .# with density f,, w.r.t. u.
Then, there exists a constant independent of fy, and of ./ such that:

nd=Vd . E(MST(X,)) — C’ J Frdu

The limit is related to the intrinsic Rényi d%‘ll—entropy which is known to converge to the Shannon

entropy as — > 1|2]. The Shannon entropy, in turn, achieves its maximum at the uniform

distribution on compact sets [3].

1| Determining Intrinsic Dimension and Entropy of High-Dimensional Shape Spaces. Costa et Hero, 2006
2| Shannon entropy, Renyi entropy, and information. Bromiley et al. 2004

3| Maximum entropy autoregressive conditional heteroskedasticity model. Park et al, 2009
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T-REG
Theoretical analysis

Behaviour on small samples (n < d+ 1, e.g. batch sizes are often smaller than or comparable to the
ambient dimension):
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T-REG
Theoretical analysis

Behaviour on small samples (n < d+ 1, e.g. batch sizes are often smaller than or comparable to the ambient dimension):
To account for the effect of the soft sphere constraint, we assume the points of X lie inside some fixed closed Euclidean d-ball
B of radius r centered at the origin

Theorem 4.1:

Under the above conditions, the maximum of the E(MST(Z)), over the point sets X C B of fixed
cardinality n is attained when the points of X lie on the sphere S = 0B, at the vertices of a regular (n — 1)
-simplex that has § as its smallest circumscribing sphere.
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T-REG
Theoretical analysis

Behaviour on small samples (n < d+ 1, e.g. batch sizes are often smaller than or comparable to the ambient dimension):
In order to account for the effect of the soft sphere constraint, we assume the points of X lie inside some fixed closed
Fuclidean d-ball B of radius r centered at the origin

Theorem 4.1:

Under the above conditions, the maximum of the E(MST(Z)), over the point sets X C B of fixed
cardinality n is attained when the points of X lie on the sphere S = 0B, at the vertices of a regular (n — 1)
-simplex that has § as its smallest circumscribing sphere.

Behavior of T-REG:

- First, Zp in L prp@ expands the point cloud until the sphere constraint term Z'q becomes the
dominating term

- Then, the points stop expanding and start spreading themselves out uniformly along the sphere of
directions.

50
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based regularization
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T-REG
Empirical analysis, promoting sample uniformity

Set-up: We apply T-REG alone to optimize the positions of a given point cloud, and we analyze its
behavior when n > d + 1.

Point Cloud optimization with L1.prec

0.000 1
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T-REG

Empirical analysis, promoting sample uniformity

Set-up: We apply T-REG alone to optimize the positions of a given point cloud, and we analyze its
behavior when n < d+ 1 (specifically n = 1024,d = 1024).
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Empirical analysis, promoting sample uniformity

Set-up: We apply T-REG alone to optimize the positions of a given point cloud, and we analyze its
behavior when n < d+ 1 (specifically n = 1024,d = 1024).

[nitial - FRES
30000 095
T-REG
~0.50
20000
~0.75
10000 —1.00
~1.25
070.00 025 050 0.75 1.00 —1.50== 1000 2000 3000
Cosine Similarity Epochs

(d) Optimization w/ T-REG (e) Loss
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T-REG
Empirical analysis, promoting sample uniformity

Set-up: We apply T-REG alone to optimize the positions of a given point cloud, and we analyze its
behavior when n < d+ 1 (specifically n = 1024,d = 1024).

Initial - FRES
30000- 095
T-REG
—0.50-
20000
—0.75"
10000 —1.00
—1.25
070.00 025 050 075 1.00 —1.50%¢ 1000 5000 3000
Cosine Similarity Epochs
(d) Optimization w/ T-REG (e) Loss

Aftter optimization with T-REG, the distribution becomes almost a Dirac slightly below 0, which indicates

that the configuration of the points is close to that of the vertices of the regular simplex.
55
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Supervised Learning




T-REGS

Transformed Representations Embeddings

images

o
X

: Lss1,(Z Z°) enforces view-invariance
< — : [ (7)), Lg(Z’) increase MIST(Z) and MST(Z’) lengths
------- : Ls(Z), Ls(Z’) enforce sphere constraint
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T-REGS

Transformed Representations Embeddings

images

s1.(Z Z°) enforces view-invariance
— Ly(Z’) increase and MST(Z’) lengths

------- : Ls(Z), L5(Z’) enforce sphere constraint

LL,7)=[f EZSSL(Z, ) +Hy LR(Z)+ A gs(Z) y L)+ A gs(Z’)

o8
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Evaluation on standard SSL Benchmark

Method CIFAR-10 (37] CIFAR-100 (37
913 68.5
Zero-CL [67] + L, 913 68.4
+ W, 91.4 68.5
90.7 60.3
. + Lo 91.0 61.2
MoCo v2 [14 + W, 91.4 63.7
80,5 63.7
_ + L, 90.1 62.7
BYOL [28 + W, 90.1 65.2
+ T-REGS 90.4 65.7
1.2 68.2
o +L. 91.4 68.4
Barlow Twins [64] ) 91.4 68.5
+ T-REGS 91.8 68.5
LMSE + T-REGS 91.3 67.4

Table 1: Comparison with W, regularization [23] on CIFAR-10/100. The table is inherited from Fang et al.
[23], and we follow the same protocol: ResNet-18 models are pre-trained for S00 epochs on CIFAR-10/100, with
a batch size of 256, followed by linear probing. We report Top-1 accuracy (%), bold indicates best performance.

On CIFAR-10/100.
T-REGS demonstrate strong standalone performances.
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Evaluation on standard SSL Benchmark

Method CIFAR-10 [37] CIFAR-100 [37
91.3 68.5
Zero-CL [67] + L, 91.3 68.4
+ Ws 91.4 68.5
90.7 60.3
_— + Lo 91.0 61.2
MoCo v2 [14 + W, 91.4 63.7
89.5 63.7
— + L, 90.1 62.7
BYOL |28 + W, 90.1 65.2
+ T-REGS 90.4 65.7
91.2 68.2
. .+ L 91.4 68.4
Barlow Twins [64] | W 91.4 68.5
+ T-REGS 91.8 68.5
EMSE + T-REGS 91.3 67.4

Table 1: Comparison with W, regularization [23] on CIFAR-10/100. The table is inherited from Fang et al.
[23], and we follow the same protocol: ResNet-18 models are pre-trained for 500 epochs on CIFAR-10/100, with
a batch size of 256, followed by linear probing. We report Top-1 accuracy (%), bold indicates best performance.

On CIFAR-10/100.

Using T-REGS as an auxiliary loss consistently improves performance over the respective baselines,
and over variants that use &£, or 7, as additional regularization terms.
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T-REGS
Evaluation on standard SSL Benchmark

E Imagenet-100 [58 ImageNet-1k [18
views Method Top-1 Batch Size  Top-1
SwAV [9] 74.3 4096 66.5
8 FroSSL [55’ 79.8 - -
SSOLE |34 82.5 256 73.9
SimCLR [12] 77.0 4096 66.5
MoCo v2 |14 79.3 256 67.4
SimSiam [13 78.7 256 68.1
W-MSE 69.1 512 65.1
Zero-CL [67] 79.3 1024 68.9
VICReg 79.4 1024 68.3
CW-RGP |61 77.0 512 67.1
INTL 81.7 512 69.5
2
: 80.3 1024 66.5
BYOL + T-REGS 80.8 1024 67.2
: : 80.2 2048 67.7
Barlow Twins [64] | 1 rEGS 80.9 2048 67.8
LmsE + T-REGS 80.3 512 68.8

Table 2: Linear Evaluation on ImageNet-100/1k. We report Top-1 accuracy (%). Top-4 best methods are
bolded. For ImageNet-100, ResNet-18 are pre-trained for 400 epochs using a batch size of 256; for ImageNet-1Kk,
ResNet-50 are pre-trained for 100 epochs. The table is mostly inherited from Weng et al. [62].

On ImageNet-100/1k.
T-REGS is competitive with method that use the same number of views.
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T-REGS
Further applications

N

—  L.y(ZZ) enforces view-invariance

Footer
64



T-REGS
Further applications

Joint-Embedding multimodal models |1]|:

’ - P U*Jﬂ@
photo of the sea > ‘photo of the sea %P U —)q—’ U

e enforces view-invariance

(7227

|1] Learning Transferable Visual Models From Natural Language Supervision, Radford et al, ICML 2021
65



T-REGS
Further applications

Joint-Embedding multimodal models |1]:

~ -
Y Z

‘photo of the sea ’\_) ‘photo of the sea —)P U — q A U

— Ly (Z enforces view-invariance

) (Z2)

Such models preserves distinct subspaces for text and image: the modality gap |2|.

|1] Learning Transferable Visual Models From Natural Language Supervision, Radford et al, ICML 2021

2] Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning, Liang et al, NeurIPS 2022
66



Further applications

We fine-tune CLIP using T-REGS as regularization to the standard CLIP loss to encourage more
robust and uniformly distributed representations.

Flickr30k [48] MS-COCO [42]
1 —t t—1 t—1 t—1
Method R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5
Zero-Shot 71.1 90.4 68.5 88.9 31.9 56.9 28.5 53.1
Finetune 81.2 95.5 80.7 05.8 36.7 63.6 36.9 63.9
ES [40] 71.8 90.0 68.5 88.9 31.9 56.9 28.7 53.0
1-Mix [39] 72.3 91.7 69.0 91.1 34.0 63.0 34.6 62.2
Un-Mix [53] 78.5 95.4 74.1 91.8 38.8 66.2 33.4 61.0
m3-Mix [44] 82.3 95.9 82.7 96.0 41.0 68.3 39.9 67.9
Lo + T-REGS 83.2 96.0 80.8 96.4 41.6 68.7 41.5 68.7

Table 3: Cross-Modal Retrieval after finetuning CLIP. Image-to-text (1 — t) and text-to-image (t
— 1) retrieval results (top 1/5 Recall: R@1, R@5). The table is mostly inherited from Oh et al. [44].
Bold indicates the best performance.
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T-REGS
Complexity

The MSTs are computed with Kruskal’s algorithm, whose worst-case time is O(B?D), with B the batch

size and D the embedding dimension.
Empirically T-REGS matches the per-step wall-clock of VICReg and simCLR.
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Complexity

The MSTs are computed with Kruskal’s algorithm, whose worst-case time is O(B*D), with B the batch

size and D the embedding dimension.
Empirically T-REGS matches the per-step wall-clock of VICReg and simCLR.

Method Complexity B range D range Wall-clock time
SimCLR [12] O(B?- D) [2048-4096] [256-1024] 0.22 +£0.03
VICReg (4] O(B - D?) [1024-4096] [4096-8192] 0.23 £+ 0.02

Lvse + T'REGS  O(B2%(D -logB)) [512-1024]  [512-2048]  0.20 = 0.001

Table 5: Complexity and computational cost. Compari-
son between different methods 1s performed, with training on
ImageNet-1k distributed across 4 Tesla H100 GPUs. The wall-
clock time (sec/step) 1s averaged over 500 steps. B, D ranges
are reported from Bardes et al. [4], Garrido et al. [25].
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Analysis

2Z2,2)=pZLqq L, L)+ y L Rr(ZL)+ A ZLg2L) +y LR(Z) + AL g(Z)

T-REGS coefficients Scaling

G v A - X Top-1
1 - - - - collapse
1 1 - 1 - collapse
10 1 1 10 1 collapse
10 0.5 Se-2 20 10 25.7
10 0.2 2e-2 50 10 45.4
10 0.5 2.5¢-3 20 200 65.0
10 0.2 le-3 50 200 65.3
10 0.5 2e-3 20 250 64.9
10 0.2 8e-4 50 250 66.1
10 0.02 8e-5 100 300 63.3

Table 4: Impact of coefficients. Lysg + T-
REGS top-1 accuracy (%) on ImageNet-1k
with online evaluation protocol over 50 epochs.
Bold indicates best performance.
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Thank you!



