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Introduction

Optimal coin packing

Given infinite number of identical coins
( )

,

how to place them on an infinite plane without overlap to maximize the covered surface?

square

coin packing:

covers 78% of the surface

1910–1940

The hexagonal coin packing is optimal.
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Introduction

(proved optimal in 2000-2022)

Kepler conjecture, 1611

The “cannonball” packing is optimal:

(proved in 1998–2014)

R8,R24

(Viazovska, Fields Medal 2022)

more coins
higher dimension
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Introduction

Nanomaterials and packings

combine different types of nanoparticles
self-assembly

new material phase separation

Paik et al 2015 Cheon et al 2006

Also in 3D:

Wu, Fan, Yin 2022

Chemists’ question : which sizes and concentrations allow for new materials?
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Disc packings on the plane

Definitions

Discs:

Packing P:
(in R2)

Density: δ
( )

:=
area

( )
area

( )
Main Question

Given a finite set of discs (e.g., ),
what is the maximal density δ∗ of a packing?

δ∗ := max
P

δ(P)
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Disc packings on the plane

Definitions

Discs:

Packing P:
(in R2)

Density:
δ∗ ≈ 90.9%

Main Question

Given a finite set of discs (e.g., ),
what is the maximal density δ∗ of a packing?

δ∗ := max
P

δ(P)
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Optimal triangulated packings

Triangulated packings

A packing is called triangulated if its contact graph is a triangulation:

Kennedy, 2006

(Packings by discs of radii 1 and r) There are 9 values of r allowing triangulated packings:

Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)

Each of these packings is optimal (densest) for discs of radii 1 and r .
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Optimal triangulated packings

Triangulated = optimal?

Optimal triangulated packings:

Conjecture (Connelly 2018)

If a finite set of discs allows saturated triangulated packings then one of them is optimal.

triangulated
saturated

non triangulated
saturated

triangulated
non saturated

non triangulated
non saturated

Theorem ( Fernique, Hashemi, Sizova 2019)

Discs of radii 1, r and s: there are 164 pairs (r , s) allowing triangulated packings.

...
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Optimal triangulated packings
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Optimal triangulated packings

164 (r , s) allowing
triangulated packings:

15 cases: non
saturated

16+16 cases:
a ternary or binary
triangulated packing
is densest

45 cases: a binary
non triangulated
packing is denser
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Optimal triangulated packings

Theorem (Fernique, P 2023)

Each of the following packings is optimal for discs of radii 1, r and s:
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Optimal triangulated packings

FM-triangulation

1-disc packing multi-size disc packing

Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

Voronoi diagram of a packing: partition of the plane into Voronoi cells

FM-triangulation of a packing: dual graph of the Voronoi diagram Fejes Tóth, Mólnar

Density of a triangle ∆ in a packing = its proportion covered by discs δ∆ = area(∆∩P)
area(∆)
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Density of a triangle ∆ in a packing = its proportion covered by discs δ∆ = area(∆∩P)
area(∆)

Daria Pchelina Optimal sphere packings 10 / 21



Optimal triangulated packings

Local density redistribution

P of density δ(P)

∀∆, δ(∆)≤≤≤ δ
( )

= δ∗

P∗ of density δ∗

δ
( )

= δ∗

Proof:

the smallest angle of any ∆ is at least π
6

2 > R = |AB|
2 sin Ĉ

≥ 1

sin Ĉ
=⇒ Ĉ > π

6

thus the largest angle is between π
3
and 2π

3

density of a triangle ∆: δ(∆) = π/2
area(∆)

the area of a triangle ABC with the largest angle Â: |AB|·|AC |· sin Â
2

≥ 2·2·
√

3
2

2
=

√
3

thus the density of ABC is less or equal to π/2√
3
= δ∗
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2

≥ 2·2·
√

3
2

2
=

√
3

thus the density of ABC is less or equal to π/2√
3
= δ∗

Daria Pchelina Optimal sphere packings 11 / 21



Optimal triangulated packings

Local density redistribution

P of density δ(P)

∀∆, δ(∆)≤≤≤ δ
( )

= δ∗

δ(P) ≤ δ∗

P∗ of density δ∗

δ
( )

= δ∗

P of density δ(P)

≤δ′(P)
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δ
( )
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( )

Hopeless to bound the density
by δ∗ in each triangle...

P∗ of density δ∗
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Optimal triangulated packings

Verifying inequalities on compact sets

How to check δ′(∆) ≤ δ∗ on each possible triangle ∆? (there is a continuum of them)

FM-triangulation properties + saturation ⇒ uniform bound on edge length

r ra          b r       br

s s

a 

ra + rb ≤ c ≤ ra + rb + 2s

Interval arithmetic: to verify δ′(∆a,b,c) ≤ δ∗ for all (a, b, c) ∈ [a, a]× [b, b]× [c, c],

we verify [δ, δ] ≤ δ∗ where [δ, δ] = δ′(∆[a,a],[b,b],[c,c])

If δ∗ ∈ [δ, δ], recursive subdivision:
...

QED
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Under the carpet

Emptiness instead of density

saturated packing P with the same discs
density δ, FM-triangulation T

saturated triangulated packing P∗

density δ∗, FM-triangulation T ∗

Density function is not additive: δ

( )
+ δ

( )
̸= δ

( )
−→

Emptiness of a triangle ∆ ∈ T : E(∆) = δ∗ × area(∆)− area(∆ ∩ P)

E(∆) > 0 iff the density of ∆ is less than δ∗

E(∆) < 0 iff the density of ∆ is greater than δ∗

Additive!

δ∗ ≥ δ ⇔
∑
∆∈T

E (∆) ≥ 0
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Under the carpet

Potential is a redistribution of emptiness

We construct a potential U(∆) :=

vertices︷ ︸︸ ︷
U̇A

∆ + U̇B
∆ + U̇C

∆ such that

∀ triangle ∆∈T , U(∆) ≤ E(∆) (∆)

∀ vertex v∈T ,
∑
∆∈Cv

U̇v
∆ ≥ 0 (•)

v∆1
∆5

∆4

∆3

∆2

v -corona Cv

If such U exists then δ∗ ≥ δ

Construct it in way that (•) holds and then prove (∆)
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Construct it in way that (•) holds and then prove (∆)
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Under the carpet

Choosing U to assure (•)

∆xyz tight triangle: tangent discs of radii x , y , z
x̂yz angle of ∆xyz in the center of the y -disc
Vxyz potential of ∆xyz in the center of the y -disc

potential of a triangle ∆ in v :

U̇v
∆ := Vxyz +m|v̂ − x̂yz |

measures how “far” ∆ is from being tight

∆1rs
∆1s1∆111

∆s1s

∆rsr

∆sss

∆srs

∆1r1 ∆1rr ∆rrr

Choose m to satisfy
∑
∆∈Cv

U̇v
∆ ≥

∑
x,y,z

disc radii of
∆∈Cv

Vxyz +m × |2π −
∑
x,y,z

disc radii of
∆∈Cv

x̂yz | ≥ 0 for all coronas Cv

angle values do not matter ⇒ sequence of disc radii S(Cv )

FM-triangulation ⇒ bounded |S(Cv )|

finite number of linear inequalities on m
⇒ computer search
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Under the carpet

Verifying (∆) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (•)

How to check U(∆) ≤ E(∆) on each possible triangle ∆? (there is a continuum of them)

FM-triangulation properties + saturation ⇒ uniform bound on edge length of triangles

Interval arithmetic:

instead of verifying U(∆a,b,c) ≤ E(∆a,b,c) for all (a, b, c) ∈ [a, a]× [b, b]× [c, c],

we verify [U,U] ≤ [E ,E ] where [E ,E ] = E(∆[a,a],[b,b],[c,c]), [U,U] = U(∆[a,a],[b,b],[c,c])

If [U,U] and [E ,E ] intersect, recursive subdivision:
...

never stops if U(∆) = E(∆)

QED

?
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Under the carpet

Local optima

On tight triangles, U(∆xyz) := E(∆xyz) → impossible to use interval method around them

ϵ-triangles Tϵ – triangles close to tight ⇒ potential close to emptiness

interval arithmetic + recursive subdivision on derivatives on side lengths xi to check that:

max
Tϵ

∂U

∂xi
∆xi < min

Tϵ

∂E

∂xi
∆xi ,

⇒ ∆xyz is the maximum of U − E on Tϵ

⇒ for all triangles ∆ from Tϵ, U(∆) ≤ E(∆)

QED
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Optimal triangulated packings

Our proof worked for these cases:

53                               54                              55                               56                

93                              108                             115                             116               

66                              76                               77                               79

118                            129                             131                             146 
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Optimal triangulated packings

And these:

δ∗ ≈ 95%

δ∗ ≈ 92%

δ∗ ≈ 93%
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Optimal triangulated packings

And these:

1 2 3 4 5 

10 11 12 13 14 15 

8

6 4

7 8 9 7

9

19 6
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Optimal triangulated packings

45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we
can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary
packing

dense binary
packing

Daria Pchelina Optimal sphere packings 20 / 21



Optimal triangulated packings

45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we
can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary
packing

dense non-triangulated
packing

Daria Pchelina Optimal sphere packings 20 / 21



Optimal triangulated packings

45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we
can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary
packing

dense binary
packing

Daria Pchelina Optimal sphere packings 20 / 21



Optimal triangulated packings

45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we
can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary
packing

dense non-triangulated
packing

Daria Pchelina Optimal sphere packings 20 / 21



Thank you for your attention!



6 Tilings

7 How to find triangulated packings

8 Packings in containers



Tilings

(Packings and tilings)

triangulated packings ∼ tilings by triangles
with local rules

density = weighted proportion of tiles

Packing Problem

Given k disc radii

algebraic numbers represented by polynomials and intervals︷ ︸︸ ︷
r1, · · · , rk ,

triangulated

packing

∀ r1, · · · , rk with packings, one is periodic ⇒ decidable

∃ r1, · · · , rk whose packings are all aperiodic ⇒
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Tilings

(Packings and tilings)

triangulated packings ∼ tilings by triangles
with local rules

density = weighted proportion of tiles

Triangulated Packing Problem

Given k disc radii

algebraic numbers represented by polynomials and intervals︷ ︸︸ ︷
r1, · · · , rk , is there a triangulated packing of density

excludes hexagonal packing︷ ︸︸ ︷
>

π

2
√
3

∀ r1, · · · , rk with triangulated packings, one is periodic ⇒ decidable

(Wang algorithm: search for a period)

∃ r1, · · · , rk whose triangulated packings are all aperiodic ⇒ undecidable?
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Tilings

(Packings and tilings)

triangulated packings ∼ tilings by triangles
with local rules

density = weighted proportion of tiles

Dense Packing Problem

Given k disc radii

algebraic numbers represented by polynomials and intervals︷ ︸︸ ︷
r1, · · · , rk , is there a

triangulated

packing of density

excludes hexagonal packing︷ ︸︸ ︷
>

π

2
√
3

∀ r1, · · · , rk with dense packings, one is periodic ⇒ decidable

(interval arithmetic and subdivision until needed precision)

∃ r1, · · · , rk whose dense packings are all aperiodic ⇒ not possible!
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How to find triangulated packings

packing is triangulated ⇐⇒ each disc has a “corona”

To find disc sizes with triangulated packings, we run trough all possible combinations of
symbolic coronas of two discs (finite number):

symbolic corona

r
r

r

r1
1

1

1

−→
r

r

r

r1
1

1

1

r+1

r+
1

r+
1

r+1
r+1

r+
1

2r

r+
12

value of r

6× 1̂1r+1× r̂1r = 2π

r ≈ 0.63

(Fernique, Hashemi, Sizova 2019)
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Packings in containers

Coins in squares and circles

Maximize min
1≤i<j≤N

√
(xi − xj)2 + (yi − yj)2

Place N identical coins in a smallest possible square solved for 1–30, 36 (1964–2005)

0 ≤ xi , xj , yi , yj ≤ 1

N=1                                      N=2                                        N=4                                        N=10                                      N=36                                              N=87                                        N=99

Place N identical coins in a smallest poss . . . circle solved for 1–13, 19 (1967–2003)

0 ≤ x2
i +y 2

i , x
2
j +y 2

j ≤ 1

N=5 N=6 N=7 N=13 N=19 N=109 N=181



Find candidates: by hand for small N, billiard simulation, perturbation method

Prove optimality: by hand for small N and circles, interval analisys, branch-and-bound
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