

Optimal coin packing

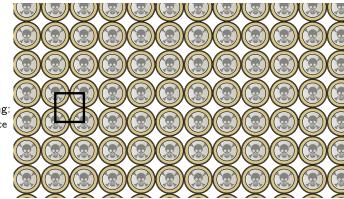
Given infinite number of identical coins (

how to place them on an infinite plane without overlap to maximize the covered surface?

Optimal coin packing

Given infinite number of identical coins (

how to place them on an infinite plane without overlap to maximize the covered surface?

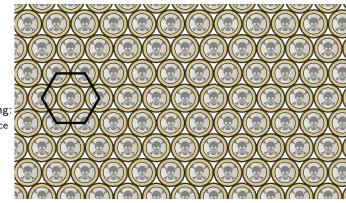


square coin packing: covers 78% of the surface

Optimal coin packing

Given infinite number of identical coins (

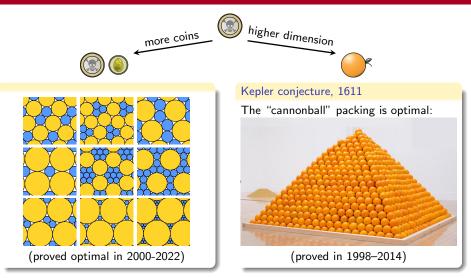
how to place them on an infinite plane without overlap to maximize the covered surface?

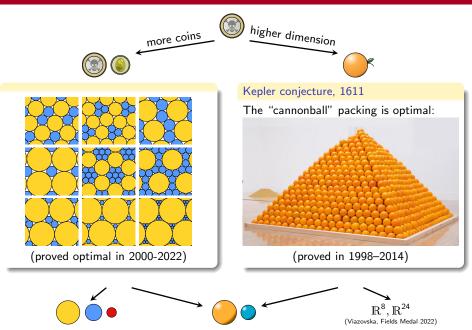


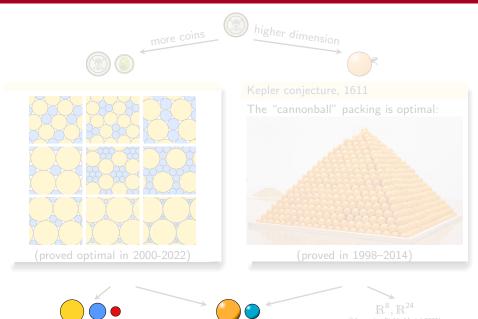
hexagonal coin packing: covers 90% of the surface

1910-1940

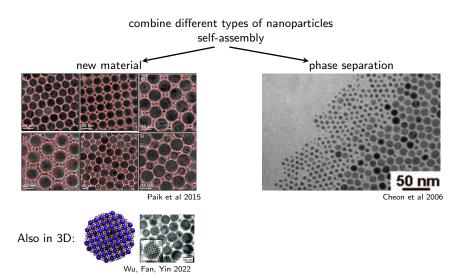
The hexagonal coin packing is optimal.







Nanomaterials and packings

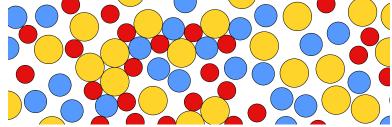


Chemists' question: which sizes and concentrations allow for new materials?

Definitions

Discs:

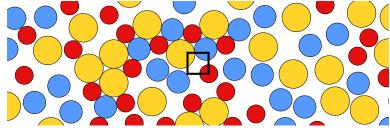
Packing P: (in \mathbb{R}^2)



Definitions

Discs:

Packing P: (in \mathbb{R}^2)

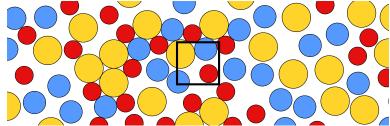


$$\delta\left(igwedge) := rac{ ext{area}\left(igwedge)}{ ext{area}\left(igwedge)}$$

Definitions

Discs:

Packing P: (in \mathbb{R}^2)

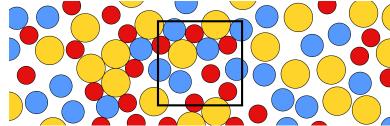


$$\delta\left(n; \stackrel{n}{\blacksquare} \cap P\right) := \frac{\operatorname{area}\left(n; \stackrel{n}{\blacksquare} \cap P\right)}{\operatorname{area}\left(n; \stackrel{n}{\blacksquare}\right)}$$

Definitions

Discs:

Packing P: (in \mathbb{R}^2)

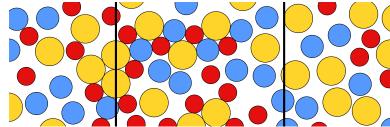


$$\delta\left(n; \stackrel{n}{\blacksquare} \cap P\right) := \frac{\operatorname{area}\left(n; \stackrel{n}{\blacksquare} \cap P\right)}{\operatorname{area}\left(n; \stackrel{n}{\blacksquare}\right)}$$

Definitions

Discs:

Packing P: (in \mathbb{R}^2)

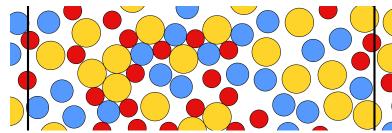


$$\delta\left(n; \stackrel{n}{\blacksquare} \cap P\right) := \frac{\operatorname{area}\left(n; \stackrel{n}{\blacksquare} \cap P\right)}{\operatorname{area}\left(n; \stackrel{n}{\blacksquare}\right)}$$

Definitions

Discs:

Packing P: (in \mathbb{R}^2)

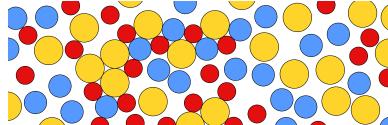


$$\delta\left(n \ddagger \stackrel{n}{\blacksquare} \cap P\right) := \frac{\operatorname{area}\left(n \ddagger \stackrel{n}{\blacksquare} \cap P\right)}{\operatorname{area}\left(n \ddagger \stackrel{n}{\blacksquare}\right)}$$

Definitions

Discs:

Packing P: (in \mathbb{R}^2)

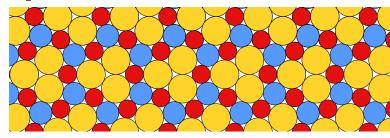


$$\delta(P) := \limsup_{n \to \infty} \frac{\operatorname{area}\left(n \right) \prod_{i=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1$$

Definitions

Discs:

Packing P: (in \mathbb{R}^2)



Density:

$$\delta^*\approx 90.9\%$$

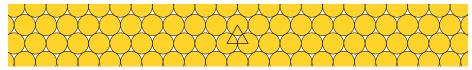
Main Question

Given a finite set of discs (e.g., $\bigcirc \bullet \bullet$), what is the maximal density δ^* of a packing?

$$\delta^* := \max_{P} \delta(P)$$

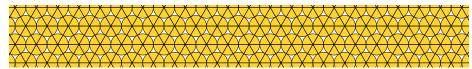
Triangulated packings

A packing is called **triangulated** if its contact graph is a triangulation:



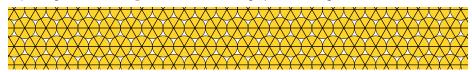
Triangulated packings

A packing is called **triangulated** if its contact graph is a triangulation:



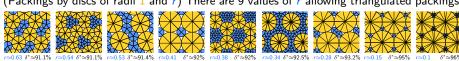
Triangulated packings

A packing is called **triangulated** if its contact graph is a triangulation:



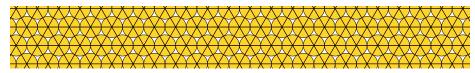
O Kennedy, 2006

(Packings by discs of radii 1 and r) There are 9 values of r allowing triangulated packings:



Triangulated packings

A packing is called **triangulated** if its contact graph is a triangulation:



Kennedy, 2006

(Packings by discs of radii 1 and r) There are 9 values of r allowing triangulated packings:

Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)

Each of these packings is optimal (densest) for discs of radii 1 and r.

Triangulated = **optimal?**

Optimal triangulated packings:

Triangulated = **optimal?**

Optimal triangulated packings:

Conjecture (Connelly 2018)

If a finite set of discs allows saturated triangulated packings then one of them is optimal.

triangulated saturated

non triangulated saturated

triangulated non saturated

non saturated

Triangulated = **optimal?**

Optimal triangulated packings:

Conjecture (Connelly 2018)

If a finite set of discs allows saturated triangulated packings then one of them is optimal.

triangulated saturated

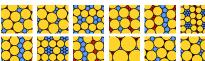
non triangulated saturated

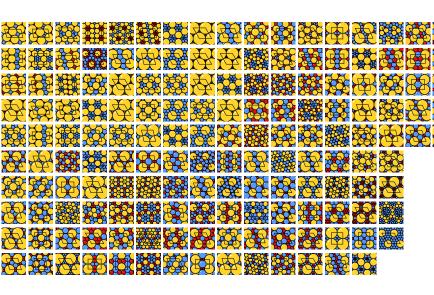
triangulated non saturated

non saturated

Theorem (O• Fernique, Hashemi, Sizova 2019)

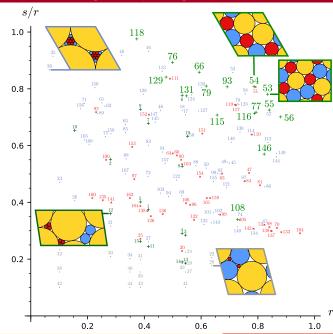
Discs of radii 1, r and s: there are 164 pairs (r, s) allowing triangulated packings.





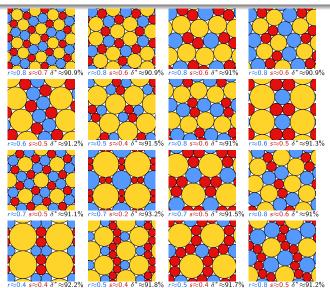
164 (r, s) allowing triangulated packings:

- 15 cases: non saturated
- 16+16 cases: a ternary or binary triangulated packing is densest
- 45 cases: a binary non triangulated packing is denser

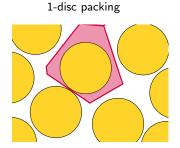


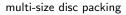
Theorem (Fernique, P 2023)

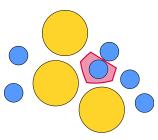
Each of the following packings is optimal for discs of radii 1, r and s:



FM-triangulation

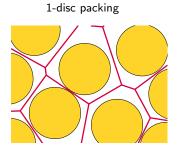


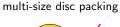


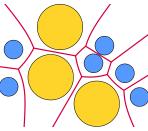


Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

FM-triangulation

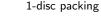


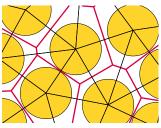




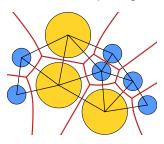
Voronoi cell of a disc in a packing: set of points closer to this disc than to any other Voronoi diagram of a packing: partition of the plane into Voronoi cells

FM-triangulation





multi-size disc packing

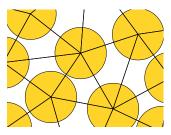


Voronoi cell of a disc in a packing: set of points closer to this disc than to any other Voronoi diagram of a packing: partition of the plane into Voronoi cells

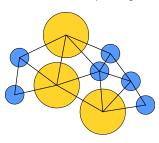
FM-triangulation of a packing: dual graph of the Voronoi diagram

Fejes Tóth, Mólnar

FM-triangulation



multi-size disc packing



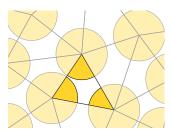
Voronoi cell of a disc in a packing: set of points closer to this disc than to any other Voronoi diagram of a packing: partition of the plane into Voronoi cells

FM-triangulation of a packing: dual graph of the Voronoi diagram

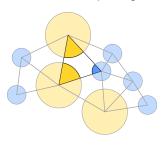
Feies Tóth, Mólnar

FM-triangulation

1-disc packing



multi-size disc packing



Voronoi cell of a disc in a packing: set of points closer to this disc than to any other **Voronoi diagram** of a packing: partition of the plane into Voronoi cells

FM-triangulation of a packing: dual graph of the Voronoi diagram

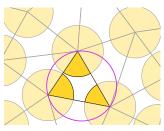
Fejes Tóth, Mólnar

Density of a triangle Δ in a packing = its proportion covered by discs

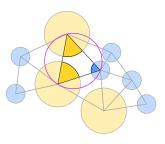
$$\Delta = \frac{area(\Delta \cap P)}{area(\Delta)}$$

10 / 21

FM-triangulation



multi-size disc packing



Voronoi cell of a disc in a packing: set of points closer to this disc than to any other Voronoi diagram of a packing: partition of the plane into Voronoi cells

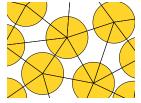
FM-triangulation of a packing: dual graph of the Voronoi diagram

Fejes Tóth, Mólnar

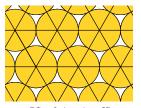
Density of a triangle Δ in a packing = its proportion covered by discs

$$\Delta = \frac{\operatorname{area}(\Delta \cap P)}{\operatorname{area}(\Delta)}$$

Local density redistribution

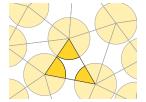


P of density $\delta(P)$

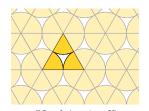


 P^{\ast} of density δ^{\ast}

Local density redistribution

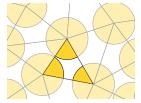


 $P \text{ of density } \delta(P)$ $\forall \Delta, \ \delta(\Delta) \leq \delta(\bigodot) = \delta^*$



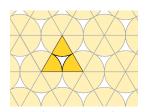
 P^* of density δ^* $\delta(\bigtriangleup) = \delta^*$

Local density redistribution



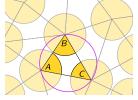
$$P \text{ of density } \delta(P)$$

$$\forall \Delta, \ \delta(\Delta) \leq \delta() = \delta^*$$

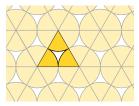


 P^* of density δ^* $\delta(\bigtriangleup) = \delta^*$

Local density redistribution



$$\delta(P) \leq \delta^*$$



 $P \text{ of density } \delta(P)$ $\forall \Delta, \ \delta(\Delta) \le \delta(\triangle) = \delta^*$

 P^* of density δ^* $\delta(\triangle) = \delta^*$

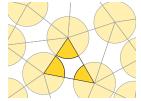
Proof:

 \bullet the smallest angle of any Δ is at least $\frac{\pi}{6}$

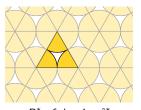
$$2 > R = \frac{|AB|}{2\sin \hat{C}} \ge \frac{1}{\sin \hat{C}} \Longrightarrow \hat{C} > \frac{\pi}{6}$$

- \bullet thus the largest angle is between $\frac{\pi}{3}$ and $\frac{2\pi}{3}$
- ullet density of a triangle Δ : $\delta(\Delta)=rac{\pi/2}{area(\Delta)}$
- the area of a triangle ABC with the largest angle \hat{A} : $\frac{|AB| \cdot |AC| \cdot \sin \hat{A}}{2} \ge \frac{2 \cdot 2 \cdot \frac{\sqrt{3}}{2}}{2} = \sqrt{3}$
- thus the density of ABC is less or equal to $\frac{\pi/2}{\sqrt{3}} = \delta^*$

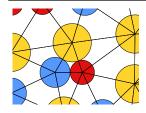
Local density redistribution



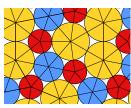
$$P \text{ of density } \delta(P)$$
$$\forall \Delta, \ \delta(\Delta) \leq \delta(\bigodot) = \delta^*$$



 P^* of density δ^* $\delta(\bigtriangleup) = \delta^*$

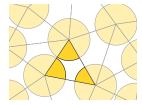


P of density $\delta(P)$

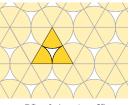


 P^* of density δ^*

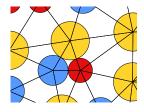
Local density redistribution



$$P \text{ of density } \delta(P)$$
$$\forall \Delta, \ \delta(\Delta) \leq \delta() = \delta^*$$

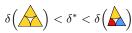


 P^* of density δ^* $\delta(\triangle) = \delta^*$

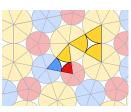


P of density $\delta(P)$

Triangles in P^* have different densities:

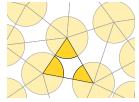


Hopeless to bound the density by δ^* in each triangle...

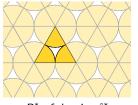


 P^* of density δ^*

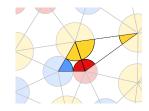
Local density redistribution



$$P \text{ of density } \delta(P)$$
$$\forall \Delta, \ \delta(\Delta) \leq \delta() = \delta^*$$

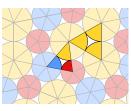


 P^* of density δ^* $\delta(\bigtriangleup) = \delta^*$



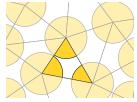
P of density $\delta(P) \leq \delta'(P)$

redistributed density $\delta' \geq \delta$: dense triangles share their density with neighbors



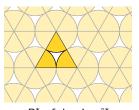
 P^* of density δ^*

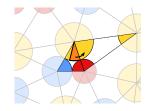
Local density redistribution



 $P \text{ of density } \delta(P)$ $\forall \Delta, \ \delta(\Delta) \leq \delta() = \delta^*$

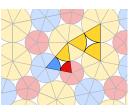
$$\delta(P) \leq \delta^*$$





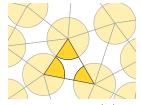
P of density $\delta(P) \leq \delta'(P)$

redistributed density $\delta' \geq \delta$: dense triangles share their density with neighbors



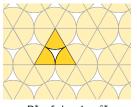
 P^* of density δ^*

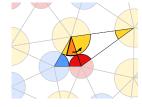
Local density redistribution



 $P \text{ of density } \delta(P)$ $\forall \Delta, \ \delta(\Delta) \leq \delta(\triangle) = \delta^*$

$$\delta(P) \leq \delta^*$$

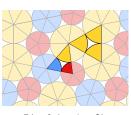




P of density $\delta(P) \leq \delta'(P)$ $\forall \Delta, \ \delta'(\Delta) \leq \delta^*$

$$\delta(P) \le \delta'(P) \le \delta^*$$

redistributed density $\delta' \geq \delta$: dense triangles share their density with neighbors



 P^* of density δ^*

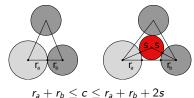
Verifying inequalities on compact sets

How to check $\delta'(\Delta) \leq \delta^*$ on each possible triangle Δ ? (there is a continuum of them)

Verifying inequalities on compact sets

How to check $\delta'(\Delta) \leq \delta^*$ on each possible triangle Δ ? (there is a continuum of them)

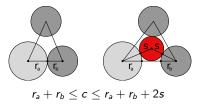
 $\mathsf{FM}\text{-triangulation properties} + \mathsf{saturation} \Rightarrow \mathsf{uniform} \ \mathsf{bound} \ \mathsf{on} \ \mathsf{edge} \ \mathsf{length}$



Verifying inequalities on compact sets

How to check $\delta'(\Delta) \leq \delta^*$ on each possible triangle Δ ? (there is a continuum of them)

FM-triangulation properties + saturation ⇒ uniform bound on edge length

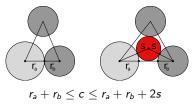


- Interval arithmetic: to verify $\delta'(\Delta_{a,b,c}) \leq \delta^*$ for all $(a,b,c) \in [\underline{a},\overline{a}] \times [\underline{b},\overline{b}] \times [\underline{c},\overline{c}]$, we verify $[\underline{\delta},\overline{\delta}] \leq \delta^*$ where $[\underline{\delta},\overline{\delta}] = \delta'(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]})$
- If $\delta^* \in [\delta, \overline{\delta}]$, recursive subdivision:

Verifying inequalities on compact sets

How to check $\delta'(\Delta) \leq \delta^*$ on each possible triangle Δ ? (there is a continuum of them)

FM-triangulation properties + saturation ⇒ uniform bound on edge length

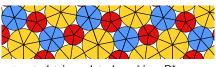


- Interval arithmetic: to verify $\delta'(\Delta_{a,b,c}) \leq \delta^*$ for all $(a,b,c) \in [\underline{a},\overline{a}] \times [\underline{b},\overline{b}] \times [\underline{c},\overline{c}]$, we verify $[\underline{\delta}, \overline{\delta}] \leq \delta^*$ where $[\underline{\delta}, \overline{\delta}] = \delta'(\Delta_{[\underline{a}, \overline{a}], [\underline{b}, \overline{b}], [\underline{c}, \overline{c}]})$
- If $\delta^* \in [\delta, \overline{\delta}]$, recursive subdivision:

QED

Emptiness instead of density

saturated packing P with the same discs density δ , FM-triangulation $\mathcal T$



saturated triangulated packing P^* density δ^* , FM-triangulation \mathcal{T}^*

Emptiness instead of density

saturated packing P with the same discs density δ , FM-triangulation $\mathcal T$

saturated triangulated packing P^* density δ^* , FM-triangulation \mathcal{T}^*

Emptiness instead of density

saturated packing P with the same discs density δ , FM-triangulation \mathcal{T}

saturated triangulated packing P^* density δ^* , FM-triangulation \mathcal{T}^*

Density function is not additive: $\delta \left(\begin{array}{c} \\ \\ \end{array} \right) + \delta \left(\begin{array}{c} \\ \\ \end{array} \right) \neq \delta \left(\begin{array}{c} \\ \\ \end{array} \right)$

Emptiness of a triangle $\Delta \in \mathcal{T}$: $E(\Delta) = \delta^* \times area(\Delta) - area(\Delta \cap P)$

 $E(\Delta) > 0$ iff the density of Δ is less than δ^* $E(\Delta) < 0$ iff the density of Δ is greater than δ^*

Additive!

Emptiness instead of density

saturated packing P with the same discs density δ , FM-triangulation $\mathcal T$

saturated triangulated packing P^* density δ^* , FM-triangulation \mathcal{T}^*

Density function is not additive: δ $\bigg(\bigg) + \delta \bigg(\bigg) \neq \delta \bigg(\bigg) \bigg) \longrightarrow$

Emptiness of a triangle $\Delta \in \mathcal{T}$: $E(\Delta) = \delta^* \times area(\Delta) - area(\Delta \cap P)$ $E(\Delta) > 0$ iff the density of Δ is less than δ^* $E(\Delta) < 0$ iff the density of Δ is greater than δ^*

Additive!

$$\delta^* \geq \delta \iff \sum_{\Delta \in \mathcal{T}} E(\Delta) \geq 0$$

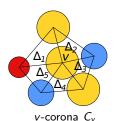
We construct a **potential**
$$U(\Delta) := \underbrace{\dot{U}_{\Delta}^A + \dot{U}_{\Delta}^B + \dot{U}_{\Delta}^C}_{\text{vertices}}$$
 such that

$$\forall$$
 triangle $\Delta \in \mathcal{T}$, $U(\Delta) \leq E(\Delta)$ (Δ)

We construct a **potential**
$$U(\Delta) := \underbrace{\dot{U}_{\Delta}^A + \dot{U}_{\Delta}^B + \dot{U}_{\Delta}^C}_{\text{vertices}}$$
 such that

$$\forall$$
 triangle $\Delta \in \mathcal{T}$, $U(\Delta) \leq E(\Delta)$ (Δ)

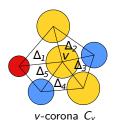
$$\forall \text{ vertex } v \in \mathcal{T}, \sum_{\Delta \in C_v} \dot{U}^v_{\Delta} \geq 0 \qquad (ullet)$$



We construct a **potential**
$$U(\Delta) := \underbrace{\dot{U}_{\Delta}^{A} + \dot{U}_{\Delta}^{B} + \dot{U}_{\Delta}^{C}}_{\text{vertices}}$$
 such that

$$\forall$$
 triangle $\Delta \in \mathcal{T}$, $U(\Delta) \leq E(\Delta)$ (Δ)

$$\forall \text{ vertex } v {\in} \mathcal{T}, \sum_{\Delta \in \mathcal{C}_v} \dot{U}^v_\Delta \geq 0 \qquad (\bullet) \ \Rightarrow \sum_{\Delta \in \mathcal{T}} \textit{U}(\Delta) \geq 0$$

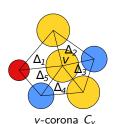


We construct a **potential**
$$U(\Delta) := \underbrace{\dot{U}_{\Delta}^A + \dot{U}_{\Delta}^B + \dot{U}_{\Delta}^C}_{\text{vertices}}$$
 such that

$$\forall \ \mathsf{triangle} \ \Delta \in \mathcal{T}, \ \mathit{U}(\Delta) \leq \mathit{E}(\Delta) \ (\Delta)$$

$$\forall \ \mathsf{vertex} \ \mathit{v} \in \mathcal{T}, \ \sum_{\Delta \in \mathit{C}_{\mathit{v}}} \dot{\mathit{U}}_{\Delta}^{\mathit{v}} \geq 0 \qquad (\bullet) \ \Rightarrow \sum_{\Delta \in \mathit{T}} \mathit{U}(\Delta) \geq 0$$

$$\Rightarrow \sum_{\Delta \in \mathit{T}} \mathit{E}(\Delta) \geq 0 \Rightarrow \delta^* \geq \delta$$

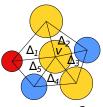


We construct a **potential**
$$U(\Delta) := \overbrace{\dot{U}_{\Delta}^A + \dot{U}_{\Delta}^B + \dot{U}_{\Delta}^C}^{\text{vertices}}$$
 such that

$$\forall \ \mathsf{triangle} \ \Delta \in \mathcal{T}, \ \mathit{U}(\Delta) \leq \mathit{E}(\Delta) \ (\Delta)$$

$$\forall \ \mathsf{vertex} \ \mathit{v} \in \mathcal{T}, \sum_{\Delta \in \mathit{C}_{\mathit{v}}} \dot{\mathit{U}}_{\Delta}^{\mathit{v}} \geq 0 \qquad (\bullet) \ \Rightarrow \sum_{\Delta \in \mathcal{T}} \mathit{U}(\Delta) \geq 0$$

$$\Rightarrow \sum_{\Delta \in \mathit{T}} \mathit{E}(\Delta) \geq 0 \Rightarrow \delta^* \geq \delta$$



If such U exists then $\delta^* > \delta$

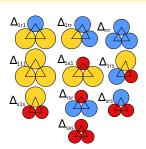
Construct it in way that (\bullet) holds and then prove (Δ)

v-corona C_v

Choosing U to assure (\bullet)

 Δ_{xyz} \widehat{xyz} V_{xyz}

tight triangle: tangent discs of radii x,y,z angle of Δ_{xyz} in the center of the y-disc potential of Δ_{xyz} in the center of the y-disc



Choosing U to assure (\bullet)

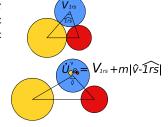
 Δ_{xyz} \widehat{xyz} V_{xyz}

tight triangle: tangent discs of radii x, y, z angle of Δ_{xyz} in the center of the y-disc potential of Δ_{xyz} in the center of the y-disc

potential of a triangle Δ in v:

$$\dot{U}^{\rm v}_{\Delta} \coloneqq V_{\rm xyz} + m |\hat{v} - \widehat{\rm xyz}|$$

measures how "far" Δ is from being tight



Choosing U to assure (\bullet)

potential of a triangle Δ in v:

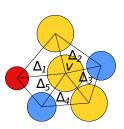
$$\dot{U}^{\rm v}_{\Delta} \coloneqq V_{\rm xyz} + m |\hat{v} - \widehat{\rm xyz}|$$

measures how "far" Δ is from being tight

measures how "far"
$$\Delta$$
 is from being tight
$$\text{Choose } m \text{ to satisfy } \sum_{\substack{\Delta \in C_{\nu} \\ \text{disc radii of } \\ \Delta \in C_{\nu} }} \dot{U}^{\nu}_{\Delta} \geq \sum_{\substack{x,y,z \\ \text{disc radii of } \\ \Delta \in C_{\nu} }} V_{xyz} + m \times |2\pi - \sum_{\substack{x,y,z \\ \text{disc radii of } \\ \Delta \in C_{\nu} }} \widehat{xyz}| \geq 0 \text{ for all coronas } C_{\nu}$$

Choosing *U* to assure (•)

 Δ_{xyz} tight triangle: tangent discs of radii x, y, z \widehat{xyz} angle of Δ_{xyz} in the center of the y-disc V_{xyz} potential of Δ_{xyz} in the center of the y-disc



potential of a triangle Δ in v:

$$\dot{U}^{v}_{\Delta} \coloneqq V_{xyz} + m|\hat{v} - \widehat{xyz}|$$

measures how "far" Δ is from being tight

Choose
$$m$$
 to satisfy $\sum_{\Delta \in C_v} \dot{U}_{\Delta}^v \geq \sum_{\substack{x,y,z \ \text{disc radii of} \ \Delta \in C_v}} V_{xyz} + m \times |2\pi - \sum_{\substack{x,y,z \ \text{disc radii of} \ \Delta \in C_v}} \widehat{xyz}| \geq 0$ for all coronas C_v

angle values do not matter \Rightarrow

sequence of disc radii $S(C_{\nu})$

FM-triangulation \Rightarrow

bounded $|S(C_v)|$

finite number of linear inequalities on m \Rightarrow computer search

Verifying (Δ) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (ullet)

How to check $U(\Delta) \leq E(\Delta)$ on each possible triangle Δ ? (there is a continuum of them)

Verifying (Δ) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (ullet)

How to check $U(\Delta) \leq E(\Delta)$ on each possible triangle Δ ? (there is a continuum of them)

 $\mbox{FM-triangulation properties} + \mbox{saturation} \Rightarrow \mbox{uniform bound on edge length of triangles}$

Verifying (Δ) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (\bullet)

How to check $U(\Delta) \leq E(\Delta)$ on each possible triangle Δ ? (there is a continuum of them)

FM-triangulation properties + saturation ⇒ uniform bound on edge length of triangles

• Interval arithmetic:

instead of verifying
$$U(\Delta_{a,b,c}) \leq E(\Delta_{a,b,c})$$
 for all $(a,b,c) \in [\underline{a},\overline{a}] \times [\underline{b},\overline{b}] \times [\underline{c},\overline{c}]$,

we verify
$$[\underline{U},\overline{U}] \leq [\underline{E},\overline{E}]$$
 where $[\underline{E},\overline{E}] = E(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]}),\ [\underline{U},\overline{U}] = U(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]})$

• If $[\underline{U},\overline{U}]$ and $[\underline{E},\overline{E}]$ intersect, recursive subdivision:

Verifying (Δ) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (\bullet)

How to check $U(\Delta) \leq E(\Delta)$ on each possible triangle Δ ? (there is a continuum of them)

FM-triangulation properties + saturation \Rightarrow uniform bound on edge length of triangles

• Interval arithmetic:

instead of verifying
$$U(\Delta_{a,b,c}) \leq E(\Delta_{a,b,c})$$
 for all $(a,b,c) \in [\underline{a},\overline{a}] \times [\underline{b},\overline{b}] \times [\underline{c},\overline{c}]$,

we verify
$$[\underline{U},\overline{U}] \leq [\underline{E},\overline{E}]$$
 where $[\underline{E},\overline{E}] = E(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]}),\ [\underline{U},\overline{U}] = U(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]})$

• If $[\underline{U},\overline{U}]$ and $[\underline{E},\overline{E}]$ intersect, recursive subdivision:

QED

Verifying (Δ) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (\bullet)

How to check $U(\Delta) \leq E(\Delta)$ on each possible triangle Δ ? (there is a continuum of them)

FM-triangulation properties + saturation ⇒ uniform bound on edge length of triangles

• Interval arithmetic:

instead of verifying
$$U(\Delta_{a,b,c}) \leq E(\Delta_{a,b,c})$$
 for all $(a,b,c) \in [\underline{a},\overline{a}] \times [\underline{b},\overline{b}] \times [\underline{c},\overline{c}]$,

we verify
$$[\underline{U},\overline{U}] \leq [\underline{E},\overline{E}]$$
 where $[\underline{E},\overline{E}] = E(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]}), \ [\underline{U},\overline{U}] = U(\Delta_{[\underline{a},\overline{a}],[\underline{b},\overline{b}],[\underline{c},\overline{c}]})$

 \bullet If $[\underline{U},\overline{U}]$ and $[\underline{E},\overline{E}]$ intersect, recursive subdivision:

never stops if
$$U(\Delta) = E(\Delta)$$

OED ?

Local optima

On tight triangles, $\mathit{U}(\Delta_{{\scriptscriptstyle X}\!{\scriptscriptstyle y}\scriptscriptstyle Z}) := \mathit{E}(\Delta_{{\scriptscriptstyle X}\!{\scriptscriptstyle y}\scriptscriptstyle Z}) o \mathsf{impossible}$ to use interval method around them

 ϵ -triangles T_{ϵ} – triangles close to tight \Rightarrow potential close to emptiness

Local optima

On tight triangles, $\mathit{U}(\Delta_{{\scriptscriptstyle X\!y\!z}}) := \mathit{E}(\Delta_{{\scriptscriptstyle X\!y\!z}}) o \mathsf{impossible}$ to use interval method around them

 ϵ -triangles T_{ϵ} – triangles close to tight \Rightarrow potential close to emptiness

interval arithmetic + recursive subdivision on derivatives on side lengths x_i to check that:

$$\max_{T_{\epsilon}} \frac{\partial U}{\partial x_i} \Delta x_i < \min_{T_{\epsilon}} \frac{\partial E}{\partial x_i} \Delta x_i,$$

Local optima

On tight triangles, $\mathit{U}(\Delta_{\mathsf{xyz}}) := \mathit{E}(\Delta_{\mathsf{xyz}}) o \mathsf{impossible}$ to use interval method around them

 ϵ -triangles \mathcal{T}_{ϵ} – triangles close to tight \Rightarrow potential close to emptiness

interval arithmetic + recursive subdivision on derivatives on side lengths x_i to check that:

$$\max_{T_{\epsilon}} \frac{\partial U}{\partial x_i} \Delta x_i < \min_{T_{\epsilon}} \frac{\partial E}{\partial x_i} \Delta x_i,$$

- \Rightarrow Δ_{xyz} is the maximum of U-E on T_{ϵ}
- \Rightarrow for all triangles Δ from T_{ϵ} , $U(\Delta) \leq E(\Delta)$

Local optima

On tight triangles, $\mathit{U}(\Delta_{\scriptscriptstyle X\!y\!z}) := \mathit{E}(\Delta_{\scriptscriptstyle X\!y\!z}) o \mathsf{impossible}$ to use interval method around them

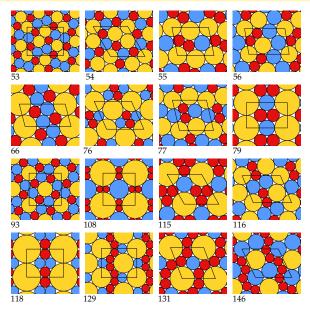
 ϵ -triangles \mathcal{T}_{ϵ} — triangles close to tight \Rightarrow potential close to emptiness

interval arithmetic + recursive subdivision on derivatives on side lengths x_i to check that:

$$\max_{T_{\epsilon}} \frac{\partial U}{\partial x_i} \Delta x_i < \min_{T_{\epsilon}} \frac{\partial E}{\partial x_i} \Delta x_i,$$

- \Rightarrow Δ_{xyz} is the maximum of U-E on T_{ϵ}
- \Rightarrow for all triangles Δ from T_{ϵ} , $U(\Delta) \leq E(\Delta)$

Our proof worked for these cases:



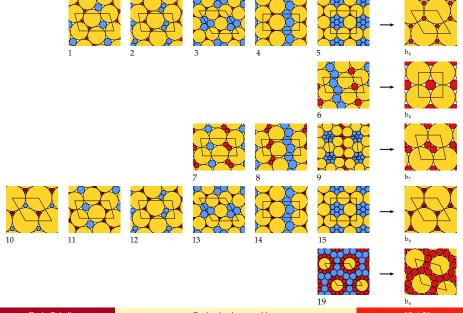
And these:

$$\delta^* \approx 92\%$$

And these:

$$\delta^* \approx 92\%$$

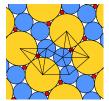
And these:



45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary packing



 $\delta \le 0.931369 \ s \approx 0.121445$

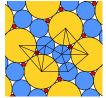
dense binary packing

 $\delta \approx 0.962430 \ r \approx 0.101021$

45 counter examples: flip-and-flow method

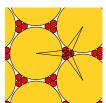
When the ratio of two discs is close enough to the ratio in a dense binary packing, we can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary packing



 $\delta \le 0.931369 \ s \approx 0.121445$

dense non-triangulated packing

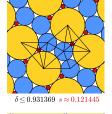


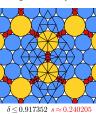
 $\delta \ge 0.937371 \ s \approx 0.121445$

45 counter examples: flip-and-flow method

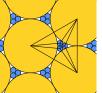
When the ratio of two discs is close enough to the ratio in a dense binary packing, we can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary packing

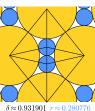




dense binary packing







 $\delta \approx 0.962430 \ r \approx 0.101021$

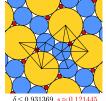
Optimal sphere packings

20 / 21

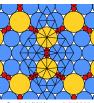
45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary packing

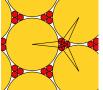


 $\delta \le 0.931369 \ s \approx 0.121445$

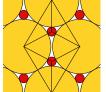


 $\delta \le 0.917352 \ s \approx 0.240205$

dense non-triangulated packing



 $\delta > 0.937371 \ s \approx 0.121445$



 $\delta > 0.939305 \ s \approx 0.166169$



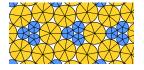
20 / 21

How to find triangulated packings

Packings in containers

(Packings and tilings)

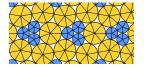
triangulated packings

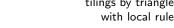


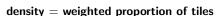
tilings by triangles with local rules

density = weighted proportion of tiles

(Packings and tilings)







Triangulated Packing Problem

algebraic numbers represented by polynomials and intervals

excludes hexagonal packing

Given k disc radii (r_1, \dots, r_k) , is there a triangulated packing of density >

$$>\frac{\pi}{2\sqrt{3}}$$

 $\forall r_1, \dots, r_k$ with triangulated packings, one is periodic (Wang algorithm: search for a period)

decidable

 $\exists r_1, \dots, r_k$ whose triangulated packings are all aperiodic

undecidable?

(Packings and tilings)

triangulated packings

density = weighted proportion of tiles

Dense Packing Problem

algebraic numbers represented by polynomials and intervals Given k disc radii $\overbrace{r_1,\cdots,r_k}$, is there a

excludes hexagonal packing

packing of density
$$> \frac{\pi}{2\sqrt{3}}$$

$$\forall$$
 r_1, \dots, r_k with dense packings, one is periodic (interval arithmetic and subdivision until needed precision)

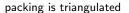
$$\Rightarrow$$

decidable

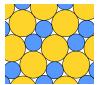
 $\exists r_1, \cdots, r_k$ whose dense packings are all aperiodic

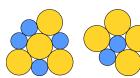
$$\Rightarrow$$

How to find triangulated packings



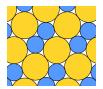
each disc has a "corona"

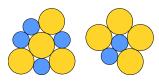




How to find triangulated packings

each disc has a "corona"





To find disc sizes with triangulated packings, we run trough all possible combinations of symbolic coronas of two discs (finite number):

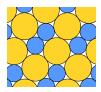
symbolic corona

(Fernique, Hashemi, Sizova 2019)

How to find triangulated packings

packing is triangulated

each disc has a "corona"



To find disc sizes with triangulated packings, we run trough all possible combinations of symbolic coronas of two discs (finite number):

symbolic corona

$$6 \times \widehat{11r} + 1 \times \widehat{r1r} = 2\pi$$

$$r \approx 0.63$$

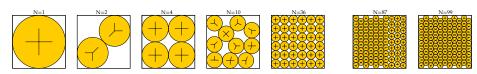
(Fernique, Hashemi, Sizova 2019)

Coins in squares and circles

Place *N* identical coins in a smallest possible square solved for 1–30, 36 (1964–2005)

Coins in squares and circles

Place N identical coins in a smallest possible square solved for 1–30, 36 (1964–2005)



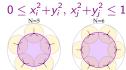
.. circle solved for 1-13, 19 (1967-2003)

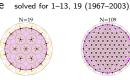
Coins in squares and circles

Maximize
$$\min_{1 \le i < j \le N} \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Place N identical coins in a smallest possible square solved for 1-30, 36 (1964-2005)

$$0 \leq \underset{N=1}{x_i}, x_j, y_i, y_j \leq 1$$

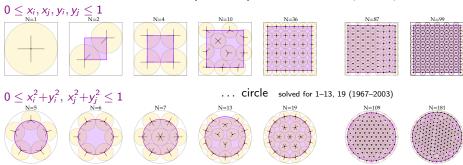




Coins in squares and circles

Maximize
$$\min_{1 \le i \le N} \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Place N identical coins in a smallest possible square solved for 1-30, 36 (1964-2005)



Find candidates: by hand for small N, billiard simulation, perturbation method

Prove optimality: by hand for small N and circles, interval analisys, branch-and-bound