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Introduction

Optimal coin packing

Given infinite number of identical coins (),

how to place them on an infinite plane without overlap to maximize the covered surface?
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Introduction

Optimal coin packing

Given infinite number of identical coins (),

how to place them on an infinite plane without overlap to maximize the covered surface?
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hexagonal coin packing: ) C@)AA(CQAAAAA“

covers 90% of the surface @@AAAAAAAA@A e
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The hexagonal coin packing is optimal. J

1910-1940
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Introduction

higher dimension

ore coins
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Introduction

Kepler conjecture, 1611

The “cannonball” packing is optimal:

Y

(proved optimal in 2000-2022) (proved in 1998-2014)
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Kepler conjecture, 1611

The “cannonball” packing is optimal:
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(proved in 1998 2014)
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Introduction

Nanomaterials and packings

combine different types of nanoparticles
self-assembly
new material/ \Phase separation
p Y — .';

s
Cheon et al 2006

Also in 3D:

Wau, Fan, Yin 2022

Chemists’ question : which sizes and concentrations allow for new materials?
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Disc packings on the plane

Definitions

Discs:

Packing P:
(in R?)
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Definitions

Discs:

Packing P:
(in R?)

Density:

Disc packings on the plane
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Disc packings on the plane

Definitions

Discs:

Packing P:
(in R?)

n
n area (nI. n P)
Density: 13 (nI. N P) =

area (nlﬁ)
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Disc packings on the plane

Definitions

Discs:

Packing P:
(in R?)

n
n area (nI. n P)
Density: 13 (nI. N P) =

area (nlﬁ)

Daria Pchelina Optimal sphere packings



Definitions

Discs:

Packing P:
(in R?)

Density:

Disc packings on the plane

n area (nliﬁ P)
) (nI.ﬂ P) =—7
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Disc packings on the plane
Definitions

Discs:

Packing P:
(in R?)

Density: d (P) :=limsup

n—o00
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Definitions

Discs:

p.
o0 —~
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X
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T C
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5" 2~ 90.9%

Density:

Main Question

Given a finite set of discs (e.g., O®@e ),
what is the maximal density §* of a packing?

= maxd(P)
Optimal sphere packings
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Optimal triangulated packings

Triangulated packings

A packing is called triangulated if its contact graph is a triangulation:
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Optimal triangulated packings

Triangulated packings

A packing is called triangulated if its contact graph is a triangulation:
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Optimal triangulated packings

Triangulated packings

A packing is called triangulated if its contact graph is a triangulation:
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O@ Kennedy, 2006

(Packings by discs of radii 1 and r) There are 9 values of r allowing triangulated packings:

Va2 A V2 AP V2, N
NS, INIIN SK

r~041 §'x92% r~0.38 §'~92% r~0.34 §"~92.5% r~0.28 §°~93.2% r~0.15 §'x~95% r~0.1 4§°~96%
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Optimal triangulated packings
Triangulated packings

A packing is called triangulated if its contact graph is a triangulation:
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QA‘§A6A$A¢A’A&AQAéA’A&AQAéAeAéAQAéAeAéA’A‘A’A‘A’A‘AQAéAQAéAQAéAQAéAQAeAQAéAQAéAQAéAQ

V.VAV. VAV VAV VIV VAV VAV VAV VAV VAV VIV VA VAV.VAV.V)
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O@ Kennedy, 2006

(Packings by discs of radii 1 and r) There are 9 values of r allowing triangulated packings:
g Vi ANV N2 A2 N2
o o TN I
Va2 A V2 AP V2, N
NSNS 27NN .7 Nw/

r~041 §'x92% r~0.38 §'~92% r~0.34 §"~92.5% r~0.28 §°~93.2% r~0.15 §'x~95% r~0.1 4§°~96% y

Theorem (Heppes 2000, 2003, Kennedy 2005, Bedaride and Fernique 2022)

Each of these packings is optimal (densest) for discs of radii 1 and r.
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Optimal triangulated packings
Triangulated = optimal?
Optimal tr
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Optimal triangulated packings
Triangulated = optimal?

Conjecture (Connelly 2018)

If a finite set of discs allows saturated triangulated packings then one of them is optimaI.J

AN
Sk

2K X
7 [¢]
X ) 2 36
o</ o7\ A o °,
triangulated non triangulated triangulated non triangulated
saturated saturated non saturated non saturated
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Optimal triangulated packings
Triangulated = optimal?
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Conjecture (Connelly 2018) J
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If a finite set of discs allows saturated triangulated packings then one of them is optimal.

N\
RN
o/ NA
triangulated . non triangulated triangulated non triangulated
saturated saturated non saturated non saturated

Theorem (Q@e Fernique, Hashemi, Sizova 2019)

Discs of radii 1, r and s: there are 164 pairs (r,s) allowing triangulated packings.
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Optimal triangulated packings
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164 (r,s) allowing
triangulated packings:

Wl .

@ 15 cases: non
saturated

@ 16+16 cases:
a ternary or binary
triangulated packing
is densest

@ 45 cases: a binary
non triangulated
packing is denser
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Optimal triangulated packings

Theorem (Fernique, P 2023)

Each of the following packings is optimal for discs of radii 1, r and s:

. .
<\
N N

>

4 4 <
r~0.8 s~0.7 §*~90.9% r=~0.8 s~

0.4 6*~91.5%

r~0.6 s~0.5 6" ~91.2% r~0.5 s

2
2

r=0.7 s~0.5 §"~91.5%

< <
r~0.4 s~0.4 §*~92.2%
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Optimal triangulated packings
FM-triangulation

1-disc packing multi-size disc packing

Voronoi cell of a disc in a packing: set of points closer to this disc than to any other
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Optimal triangulated packings
FM-triangulation

1-disc packing multi-size disc packing

\J D
3\ @ ©

Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

Voronoi diagram of a packing: partition of the plane into Voronoi cells
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Optimal triangulated packings

FM-triangulation
1-disc packing multi-size disc packing
Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

Voronoi diagram of a packing: partition of the plane into Voronoi cells

FM-triangulation of a packing: dual graph of the Voronoi diagram Fejes T6th, Mélnar
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Optimal triangulated packings

FM-triangulation

1-disc packing multi-size disc packing

Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

Voronoi diagram of a packing: partition of the plane into Voronoi cells
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Optimal triangulated packings

FM-triangulation
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Optimal triangulated packings

Local density redistribution

P of density §(P) P* of density §*
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Optimal triangulated packings
Local density redistribution

X

P of density §(P) P* of density §*

VA, 6(8) < 5(AA) = o 5(A) =6
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Optimal triangulated packings
Local density redistribution

‘i‘& 5(P) <o &

P of density §(P) P* of density §*

VA, 6(8) < 5(AA) = o 5(A) =6

Proof:

o the smallest angle of any A is at least % 2> R = 148l > = C>

H ™ 2
o thus the largest angle is between 3 and =F

o density of a triangle A: §(A) = —=/2

area(A)

o the area of a triangle ABC with the largest angle A: ‘AB"‘A;"SE"/E >22% _ /3

@ thus the density of ABC is less or equal to L\//gz =0"
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Optimal triangulated packings
Local density redistribution

P of density §(P) P* of density §*

VA, 6(8) < 5(AA) = o 5(A) =6

| 4

P of density §(P) P* of density §*
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Optimal triangulated packings
Local density redistribution

X

P of density §(P) P* of density §*

VA, 6(8) < 5(AA) = o 5(A) =6

| 4

Triangles in P* have different
densities:

6(&) <6" < 6(&)

Hopeless to bound the density
P of density §(P) by 6" in each triangle... P* of density 6*
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Optimal triangulated packings
Local density redistribution

X

P of density §(P) P* of density §*

VA, 6(8) < 5(AA) = o 5(A) =6

redistributed density §' > §:

dense triangles
P of density 6(P)<d'(P) share their density P* of density 6*
with neighbors
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Optimal triangulated packings
Local density redistribution

X

P of density §(P) P* of density §*

VA, 6(8) < 5(AA) = o 5(A) =6

§(P) <o'(P) < 0"

redistributed density §' > §:
dense triangles
P of density 6(P)<d'(P) share their density P* of density 6*
VA, §(A) <6 with neighbors
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Optimal triangulated packings

Verifying inequalities on compact sets

How to check §'(A) < &* on each possible triangle A? (there is a continuum of them)
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Optimal triangulated packings
Verifying inequalities on compact sets

How to check §'(A) < &* on each possible triangle A? (there is a continuum of them)

FM-triangulation properties + saturation = uniform bound on edge length

o

rt+mnn<c<r+rmn+2s
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Optimal triangulated packings
Verifying inequalities on compact sets

How to check §'(A) < &* on each possible triangle A? (there is a continuum of them)

FM-triangulation properties + saturation = uniform bound on edge length

o

rt+mnn<c<r+rmn+2s

o Interval arithmetic: to verify §' (A, ) < 0° for all (a, b,c) € [a,3] x [b, b] X [c, €],
we verify [3,0] < 6" where [4,0] = &' (A}, 5. 53.c.q])

o If 6* €[4, 6], recursive subdivision: @ N % -
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Optimal triangulated packings
Verifying inequalities on compact sets

How to check §'(A) < &* on each possible triangle A? (there is a continuum of them)

FM-triangulation properties + saturation = uniform bound on edge length

o

rt+mnn<c<r+rmn+2s

o Interval arithmetic: to verify §' (A, ) < 0° for all (a, b,c) € [a,3] x [b, b] X [c, €],
we verify [3,0] < 6" where [4,0] = &' (A}, 5. 53.c.q])

o If 6* €[4, 6], recursive subdivision: @ N @ -
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Under the carpet

Emptiness instead of density

2 'Q*VI N
WS

ah/

saturated packing P with the same discs saturated triangulated packing P*
density §, FM-triangulation T density 6%, FM-triangulation 7~
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Under the carpet
Emptiness instead of density

2 'Q*VI N
WS

ah/

saturated packing P with the same discs saturated triangulated packing P*
density §, FM-triangulation T density 6%, FM-triangulation 7~

Density function is not additive: ¢ ( @) +0 (é) #* 4 ( @) —
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Under the carpet
Emptiness instead of density

\ |

AAV AY’
e

ah/

saturated packing P with the same discs saturated triangulated packing P*
density §, FM-triangulation T density 6%, FM-triangulation 7~

Density function is not additive: ¢ ( @) +0 (@) #* 4 ( @) —

Emptiness of a triangle A € T: E(A) = 6" X area(A) — area(A N P)

E(A) > 0 iff the density of A is less than §*
E(A) < 0 iff the density of A is greater than 6"

Additive!
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Under the carpet
Emptiness instead of density

\ |

A‘V AY’
e

ah/

saturated packing P with the same discs saturated triangulated packing P*
density §, FM-triangulation T density 6%, FM-triangulation 7~

Density function is not additive: ¢ ( @) +0 (@) #* 4 ( @)

Emptiness of a triangle A € T: E(A) = 6" X area(A) — area(A N P)

E(A) > 0 iff the density of A is less than §*
E(A) < 0 iff the density of A is greater than 6"

l

Additive!
V>0 & E E(A) >
AcT
R e e -



Under the carpet

Potential is a redistribution of emptiness

vertices

We construct a potential U(A) = UA + US + US such that

Y triangle AeT, U(A) < E(A) (A)
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Under the carpet

Potential is a redistribution of emptiness

vertices

We construct a potential U(A) = UA + US + US such that

Y triangle AeT, U(A) < E(A) (A)

Y vertex veT, Z UL >0 (o)

AcCy

v-corona C,
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Under the carpet

Potential is a redistribution of emptiness

vertices

We construct a potential U(A) = UA + US + US such that

Y triangle AeT, U(A) < E(A) (A)

V vertex veT, Z UL >0 (o) = Z ua)>o

AcCy AeT

v-corona C,
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Under the carpet

Potential is a redistribution of emptiness

vertices

We construct a potential U(A) = UA + US + US such that

Y triangle AeT, U(A) < E(A) (A)

= > E(A)>0=0">5
Y vertex veT, Z UL>0 (o) = Z u(a) >0 AST

AcCy AeT

v-corona C,
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Under the carpet

Potential is a redistribution of emptiness

vertices

We construct a potential U(A) = UA + US + US such that

Y triangle AeT, U(A) < E(A) (A)

= > E(A)>0=0">5

Vvertex veT, > UL >0 (o) = > U(A)>0 aeT
AcC, AT

If such U exists then 6 > ¢

Construct it in way that (e) holds and then prove (A)

v-corona C,

Daria Pchelina Optimal sphere packings 14 /21



Under the carpet
Choosing U to assure (o)

Ay, tight triangle: tangent discs of radii x, y, z Ay A, A,

Xyz angle of A,, in the center of the y-disc

Viyz potential of A,y, in the center of the y-disc A&)Am A
g

Asss

>
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Under the carpet

Choosing U to assure (o)

Asyz tight triangle: tangent discs of radii x, y, z
Xyz angle of A,,, in the center of the y-disc
Viyz potential of A,y, in the center of the y-disc

potential of a triangle A in v:

Vi +m|0-173]
Ux = Vi, + m|0 — xyz|

measures how “far’ A is from being tight

Daria Pchelina Optimal sphere packings 15 /21



Under the carpet

Choosing U to assure (o)

potential of a triangle A in v:

Uk = Vigz + m|0 — 52|

measures how “far” A is from being tight

Choose m to satisfy Z UZ > Z Viyz + m x |27 — Z xyz| > 0 for all coronas C,

AEC, XY,z XY,z
disc radii of disc radii of
AeC, AeCy

Daria Pchelina Optimal sphere packings 15 /21



Under the carpet

Choosing U to assure (o)

Choose m to satisfy Z UZ > Z Viyz + m x |27 — Z xyz| > 0 for all coronas C,

AEC, X,y,z X,¥,Z
disc radii of disc radii of
AeC, AeCy
angle values do not matter = sequence of disc radii S(C,)
FM-triangulation = bounded |S(C.)]

finite number of linear inequalities on m
= computer search

Daria Pchelina Optimal sphere packings 15 /21



Under the carpet

Verifying (A) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (e)

How to check U(A) < E(A) on each possible triangle A? (there is a continuum of them)

Daria Pchelina Optimal sphere packings 16 / 21



Under the carpet

Verifying (A) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (e)

How to check U(A) < E(A) on each possible triangle A? (there is a continuum of them)

FM-triangulation properties + saturation = uniform bound on edge length of triangles
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Under the carpet

Verifying (A) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (e)

How to check U(A) < E(A) on each possible triangle A? (there is a continuum of them)
FM-triangulation properties + saturation = uniform bound on edge length of triangles

@ Interval arithmetic:

instead of verifying U(A. ) < E(A,b.c) for all (a, b, c) € [a,3] x [b, b] x [c, €],

we verify [U, U] < [E, E] where [E,E]= E(AE,E],[Q,E],E,E])' U, U] = U(A[aély[,b,zl,b?])

o If [U, U] and [E, E] intersect, recursive subdivision: @ N @ N
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Under the carpet

Verifying (A) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (e)

How to check U(A) < E(A) on each possible triangle A? (there is a continuum of them)
FM-triangulation properties + saturation = uniform bound on edge length of triangles

@ Interval arithmetic:

instead of verifying U(A. ) < E(A,b.c) for all (a, b, c) € [a,3] x [b, b] x [c, €],

we verify [U, U] < [E, E] where [E,E]= E(AE,E],[Q,E],E,E])' U, U] = U(A[aély[,b,zl,k,?])

ot

_ — . Rad .
e If [U, U] and [E, E] intersect, recursive subdivision: @ N

&
=2

NA

<>
>
J
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Under the carpet

Verifying (A) with recursive subdivision

Defining U, we make it as small as possible keeping it positive around any vertrex (e)

How to check U(A) < E(A) on each possible triangle A? (there is a continuum of them)
FM-triangulation properties + saturation = uniform bound on edge length of triangles

@ Interval arithmetic:

instead of verifying U(A. ) < E(A,b.c) for all (a, b, c) € [a,3] x [b, b] x [c, €],

we verify [U, U] < [E, E] where [E,E]= E(AE,E],[Q,E],E,E])' U, U] = U(A[aély[,b,zl,b?])

o If [U, U] and [E, E] intersect, recursive subdivision: @ N @ N

never stops if U(A) = E(A)
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Under the carpet
Local optima

BB D HHRALG

On tight triangles, U(Ayy;) := E(Axz) — impossible to use interval method around them

©
X

L
e-triangles T. — triangles close to tight = potential close to emptiness @

<e
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Under the carpet

Local optima

BB D HHRALG

On tight triangles, U(Ayy;) := E(Axz) — impossible to use interval method around them

©
X

«

L
e-triangles T. — triangles close to tight = potential close to emptiness @

<e
interval arithmetic 4 recursive subdivision on derivatives on side lengths x; to check that:

maxa—UAx- < min OE
. Ox T Ox

AXI7
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e-triangles T. — triangles close to tight = potential close to emptiness @

<e
interval arithmetic 4 recursive subdivision on derivatives on side lengths x; to check that:

maxa—UAx- < min OE
. Ox T Ox

AXI7
= A,y is the maximum of U — E on T,

= for all triangles A from T, U(A) < E(A)
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Optimal triangulated packings
And these:

0 =~ 93% 0 ~ 95%

-
5 ~ 92% <0>
A
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And these:
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Optimal triangulated packings

And these:
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Optimal triangulated packings

45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we
can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary
packing

dense binary
packing

§~0.962430 7~ 0.101021
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Optimal triangulated packings

45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we
can pack these discs in a similar (non triangulated) manner and still get high density

triangulated ternary
packing

dense non-triangulated
packing

>
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Optimal triangulated packings

45 counter examples: flip-and-flow method

When the ratio of two discs is close enough to the ratio in a dense binary packing, we
can pack these discs in a similar (non triangulated) manner and still get high density

~
] =

Y
N

>
|

S

ANNA L A

""AVA‘
AN

=|

triangulated ternary
packing

)=

Wi
/¢

<
S
4»4?‘

5<0.924522 5 ~0.166169 5<0.917352 5 ~0.240205

§<0.931369 s~ 0.121445
dense binary
packing

§~0.962430 1~ 0101021 §~0.950308 r~0.154701 5 0.931901 7 7
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Optimal triangulated packings

45 counter examples: flip-and-flow method

S R R S

When the ratio of two discs is close enough to the ratio in a dense binary packing, we
can pack these discs in a similar (non triangulated) manner and still get high density

~
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Y
N

>
|

S

ANNA L A

""AVA‘
AN

=|

triangulated ternary
packing

)=

v‘?‘vl

<
S
4»4?‘

§<0.924522 s~ 0.166169 §<0.917352 s~ 0.240205

§<0.931369 s~ 0.121445

dense non-triangulated
packing

6>0.937371 s~0. 121110 §>0.939305 s~ 0.166169 5>0918420 s~ 0.240205

Daria Pchelina Optimal sphere packings 20 / 21



20 o 00 ¢
CHE® 000 o

N G RGRGR

\f(
~



O Tilings

@ How to find triangulated packings

@ Packings in containers



(Packings and tilings)

triangulated packings ~ tilings by triangles
with local rules

7 NSNS
v'w'w'
4»‘ AV‘V 'Ab‘ W %/’ V > <

~

K5
" " V "

density = weighted proportion of tiles
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(Packings and tilings)

triangulated packings ~ tilings by triangles
with local rules

C IO

A vuv X/

VY ﬁ':v f»: W %//4 V -
LA

Bttty T o 7

density = weighted proportion of tiles

Triangulated Packing Problem

excludes hexagonal packing
algebraic numbers represented by polynomials and intervals — e

Given k disc radii 1,--- , rc, is there a triangulated packing of density > T

2V3

Y n,---,r with triangulated packings, one is periodic = decidable
(Wang algorithm: search for a period)

dr, -, r whose triangulated packings are all aperiodic = undecidable?
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(Packings and tilings)

Dense Packing Problem

excludes hexagonal packing
algebraic numbers represented by polynomials and intervals — e

Given k disc radii r,---, rc, is there a packing of density > T

2V3

¥ n,---, r with dense packings, one is periodic = decidable
(interval arithmetic and subdivision until needed precision)

dn,---, r whose dense packings are all aperiodic not possible!
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How to find triangulated packings

packing is triangulated each disc has a “corona”

2w
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How to find triangulated packings

packing is triangulated each disc has a “corona”

2w

To find disc sizes with triangulated packings, we run trough all possible combinations of
symbolic coronas of two discs (finite number):

symbolic corona

r 1

(Fernique, Hashemi, Sizova 2019)
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How to find triangulated packings

packing is triangulated each disc has a “corona”

2w

To find disc sizes with triangulated packings, we run trough all possible combinations of
symbolic coronas of two discs (finite number):

symbolic corona — value of r
r 1 — —
6x1lr4+1xrlr =27
r 1 r
~ 0.63
1 1 r=0.
r

(Fernique, Hashemi, Sizova 2019)
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Packings in containers
Coins in squares and circles

Place N identical coins in a smallest possible square solved for 1-30, 36 (1964-2005)

00000000 0N
00000000

0/0/0/0/0/0/0/0.0
[0j0j0/0]0/0]0,0/0]

|1
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solved for 1-30, 36 (1964—2005)

Place N identical coins in a smallest possible square

N=10

N=2

solved for 1-13, 19 (1967-2003)

circle
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Packings in containers

Coins in squares and circles

- )2 )2
Maximize <m|n<N\/(X, X2+ (vi — ¥;)

Place N identical coins in a smallest possible square solved for 1-30, 36 (1964-2005)
O < X17XJ7yH.yJ S 1

N=2 N=4 N=10

N=36 N=87 N=99
. I e DR
. DT coe0aces
1 Y| (PEREEE CECESSa
PEEEE ,:,:,:::
... circle solved for 1-13, 19 (1967-2003
0<X+y,,X+y,<1 solved for ( )
N=7 N=13 N=19 N=109
Fo s RN N
b QEEN) (O fEee
j/ \& 4 \ 4 ) (y) (S NN Lo
(- (- N e XEHX \\*
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Packings in containers

Coins in squares and circles

Maximize min
1<i<j<N

Vi = x)2+ (vi — y)?

Place N identical coins in a smallest possible square

0< Xiy Xjy Yis Vi < 1
N=1 N=2

i

0 < xP+yf, K +yf <1
N=6

N=5

/

7S AN AT
(j 4 e CE

N/ Nl

solved for 1-30, 36 (1964—2005)

N=10 N=36 N=87 N=99
IR e CEOe ORI 8282
X EOERES R SCE0ECEE
1) 0G| Peeead CECESSa
9 A e Sy
SRR SoeoecEs 2050
. circle solved for 1-13, 19 (1967-2003)
N=13 N=19 N=109
. vy TS
£ 3 { y FREE RS
KOO | X €D € e eooa
V() Rt G
R e G

Find candidates: by hand for small N, billiard simulation, perturbation method

Prove optimality: by hand for small N and circles, interval analisys, branch-and-bound

Daria Pchelina
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