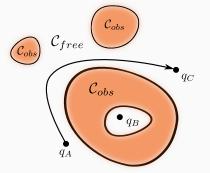


Algorithms for connectivity queries on unbounded real algebraic sets

14th October 2025

JGA '25

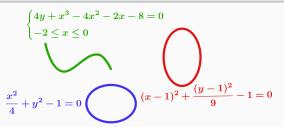


Rémi Prébet Joint works with M. Safey El Din, É. Schost J. Capco, P. Wenger SLIDES:

rprebet.github.io/#talks

Semi-algebraic sets

Real solutions of systems of polynomial equations and inequalities



Physics

Program verification

Robotics

Semi-algebraic sets

Real solutions of systems of polynomial equations and inequalities

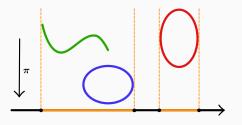
Fundamental algorithmic problems

Project: what is the possible set of values?

Sample: are there any solutions?

Semi-algebraic sets

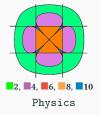
Real solutions of systems of polynomial equations and inequalities



Fundamental algorithmic problems

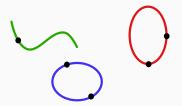
Project: what is the possible set of values?

Sample: are there any solutions?



Semi-algebraic sets

Real solutions of systems of polynomial equations and inequalities



Fundamental algorithmic problems

Project: what is the possible set of values?

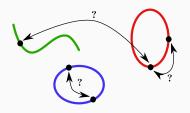
Sample: are there any solutions?

```
 \begin{cases} 1 & \text{ercal: } i, s, n; \\ 2 & \text{erc: } n \geq 1; \\ 3 & i = 0; s = 0; \\ 4 & \text{einvariant: } [(i,s),2] \geq 0 \ \land \ [(i,s),2] \geq 0 \\ 5 & \text{while} ([(i,n],1]) \\ 6 & \text{for } i = i+1; \\ 8 & s = [(i,s,1]; \\ 9 & \text{gost: } (n-1) \cdot n/2 \leq s \leq n \cdot (n+1)/2; \\ \end{cases}
```

Program verification

Semi-algebraic sets

Real solutions of systems of polynomial equations and inequalities



Fundamental algorithmic problems

Project: what is the possible set of values?

Sample: are there any solutions?

Robotics

Semi-algebraic sets

Real solutions of systems of polynomial equations and inequalities

Fundamental algorithmic problems

Project: what is the possible set of values?

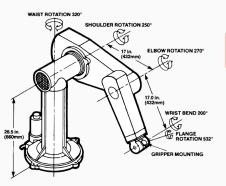
Sample: are there any solutions?

Robotics

A challenging application in robotics

$\mathrm{Jac}_{v_2,\dots,v_5}(\mathcal{K})$ for a $\mathtt{PUMA}\text{-type}$ robot with a non-zero offset in the wrist

$$\begin{bmatrix} (v_3+v_2)(1-v_2v_3) & 0 & A(\mathbf{v}) & d_3A(\mathbf{v}) & a_2(v_3^2+1)(v_2^2-1)-a_3A(\mathbf{v}) & 2d_3(v_3+v_2)(v_2v_3-1) \\ 0 & v_3^2+1 & 0 & 2a_2v_3 & 0 & (a_3-a_2)v_3^2+a_2+2a_3 \\ 0 & 1 & 0 & 0 & 0 & 2a_3 \\ 0 & 0 & 1 & 0 & 0 & 0 & 2a_3 \\ v_4 & 1-v_4^2 & 0 & d_4(1-v_4^2) & -2d_4v_4 & 0 \\ (v_4^2-1)v_5 & 4v_4v_5 & (1-v_5^2)(v_4^2+1) & (1-v_5^2)(v_4^2-1)d_5+4d_4v_4v_5 & 2d_5v_4(1-v_5^2)+2d_4v_5(1-v_4^2) & -2d_5v_5(v_4^2+1) \end{bmatrix}$$



Robotic problem

Count the number of aspects of this robot.

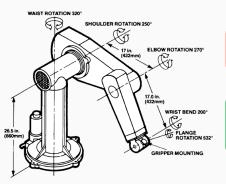
A PUMA 560 [Unimation, 1984]

A challenging application in robotics

$\mathrm{Jac}_{v_2,\ldots,v_5}(\mathcal{K})$ for a PUMA-type robot with a non-zero offset in the wrist

$$\begin{bmatrix} (v_3+v_2)(1-v_2v_3) & 0 & A(\mathbf{v}) & d_3A(\mathbf{v}) & a_2(v_3^2+1)(v_2^2-1)-a_3A(\mathbf{v}) & 2d_3(v_3+v_2)(v_2v_3-1) \\ 0 & v_3^2+1 & 0 & 2a_2v_3 & 0 & (a_3-a_2)v_3^2+a_2+2a_3 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 2a_3 \\ v_4 & 1-v_4^2 & 0 & d_4(1-v_4^2) & -2d_2v_4 & 0 \\ (v_4^2-1)v_5 & 4v_4v_5 & (1-v_5^2)(v_4^2+1) & (1-v_5^2)(v_4^2-1)d_5+4d_4v_4v_5 & 2d_5v_4(1-v_5^2)+2d_4v_5(1-v_4^2) & -2d_5v_5(v_4^2+1) \end{bmatrix}$$

where
$$A(\mathbf{v}) = (v_3^2 - 1)(v_2^2 - 1) - 4v_2v_3$$



Robotic problem

Count the number of aspects of this robot.

Semi-algebraic problem

Compute the number of connected components of $S = \{ v \in \mathbb{R}^4 \mid \det(M(v)) \neq 0 \}$

A PUMA 560 [Unimation, 1984]

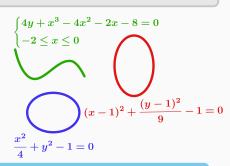
Complexities of the algorithmics of semi-algebraic sets

Semi-algebraic set S

Defined by s polynomial (equations+inequalities) with n variables of deg $\leq D$

General-purpose algorithm [Collins; '75]

Complexity: $(sD)^{2^{O(n)}}$



Fundamental algorithmic problem

Project S onto t coordinates $\leadsto s^{n+1}D^{O(nt)}$ [Basu-Pollack-Roy, '96] Optimal

Sample points of $S \rightsquigarrow s^{\boldsymbol{n}}D^{O(\boldsymbol{n})}$ [Basu-Pollack-Roy, '98] Optimal

Connect two points in $S \rightsquigarrow s^{n+1}D^{O(n^2)}$ [Basu-Pollack-Roy, '00] Not optimal

Computing connectivity properties: Roadmaps

 $\P_{\text{[Canny, 1988]}}$ Compute $\mathcal{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

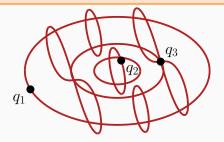
A semi-algebraic curve $\mathscr{R} \subset S$, containing query points (q_1, \ldots, q_N) s.t. for all connected components C of S: $C \cap \mathscr{R}$ is non-empty and connected

Proposition

 q_i and q_j are path-connected in $S \iff$ they are in \mathscr{R}

Problem reduction

Arbitrary dimension \Longrightarrow Dimension 1 ROADMAP



Computing connectivity properties: Roadmaps

 \P [Canny, 1988] Compute $\mathcal{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

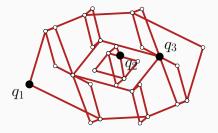
A semi-algebraic curve $\mathscr{R} \subset S$, containing query points (q_1, \ldots, q_N) s.t. for all connected components C of S: $C \cap \mathscr{R}$ is non-empty and connected

Proposition

 q_i and q_j are path-connected in $S \iff$ they are in $\mathscr{R} \iff$ they are in \mathscr{G}

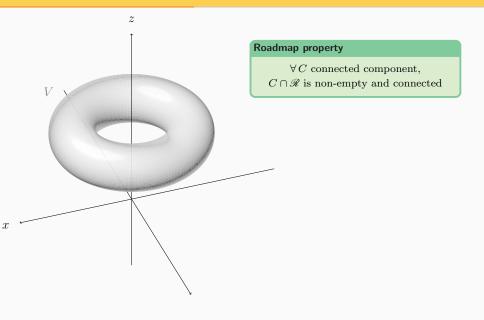
Problem reduction

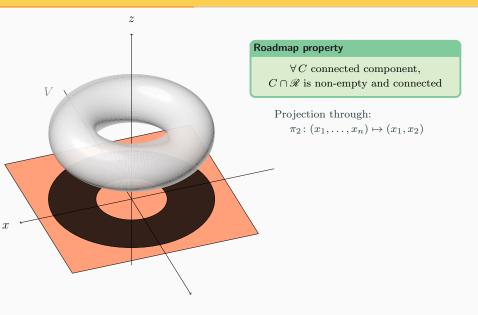
Arbitrary dimension \Longrightarrow Roadmap Dimension 1 \Longrightarrow Finite graph $\mathscr G$

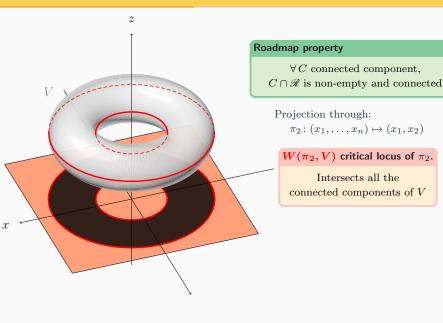


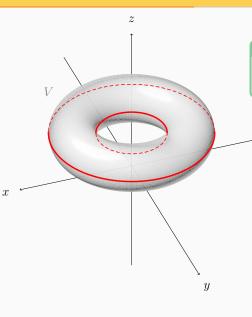
Roadmap algorithms for unbounded algebraic sets

joint work with M. Safey El Din and É. Schost









Roadmap property

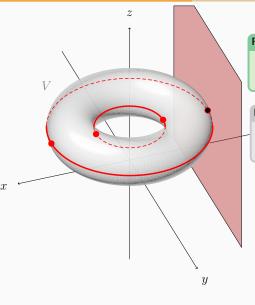
 $\forall\, C \text{ connected component},$ $C\cap \mathcal{R} \text{ is non-empty and connected}$

Projection through:

$$\pi_2 \colon (x_1,\ldots,x_n) \mapsto (x_1,x_2)$$

 $W(\pi_2, V)$ critical locus of π_2 .

 $\label{eq:connected} \text{Intersects all the} \\ \text{connected components of } V$



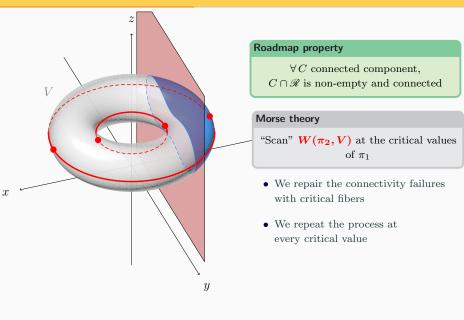
Roadmap property

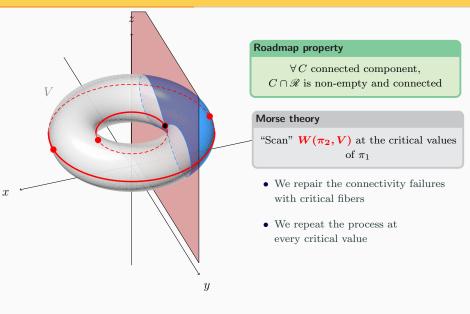
 $\forall\, C \text{ connected component},$ $C\cap \mathcal{R} \text{ is non-empty and connected}$

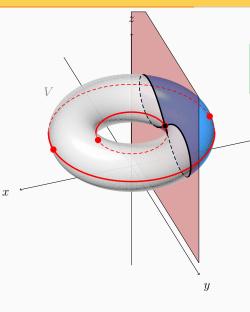
Morse theory

"Scan" $W(\pi_2, V)$ at the critical values of π_1

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value







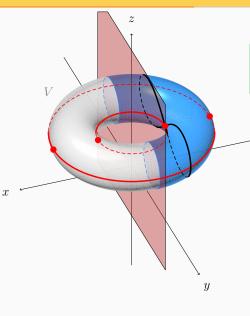
Roadmap property

 $\forall\, C \text{ connected component},$ $C\cap \mathcal{R} \text{ is non-empty and connected}$

Morse theory

"Scan" $W(\pi_2, V)$ at the critical values of π_1

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value



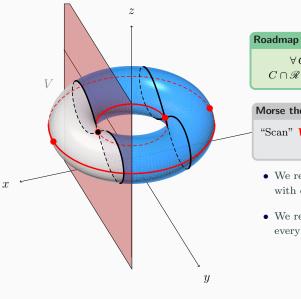
Roadmap property

 $\forall\, C \text{ connected component},$ $C\cap \mathcal{R} \text{ is non-empty and connected}$

Morse theory

"Scan" $W(\pi_2, V)$ at the critical values of π_1

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value



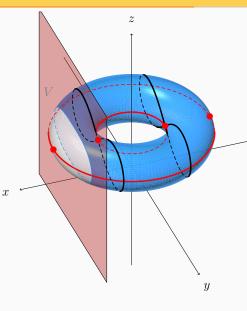
Roadmap property

 $\forall C$ connected component, $C \cap \mathcal{R}$ is non-empty and connected

Morse theory

"Scan" $W(\pi_2, V)$ at the critical values of π_1

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value



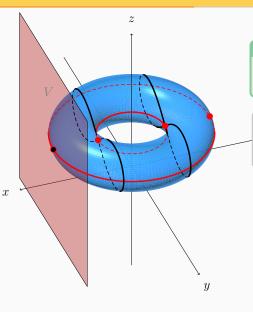
Roadmap property

 $\forall\, C \text{ connected component},$ $C\cap \mathcal{R} \text{ is non-empty and connected}$

Morse theory

"Scan" $W(\pi_2, V)$ at the critical values of π_1

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value



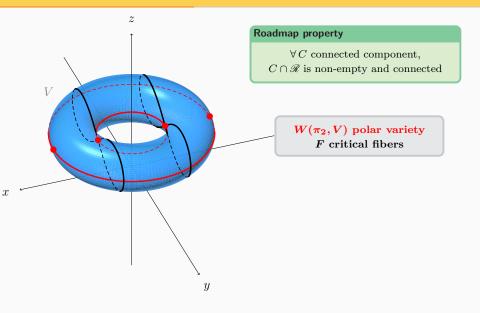
Roadmap property

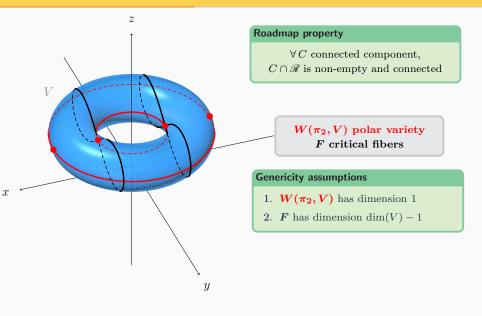
 $\forall\, C \text{ connected component},$ $C\cap \mathcal{R} \text{ is non-empty and connected}$

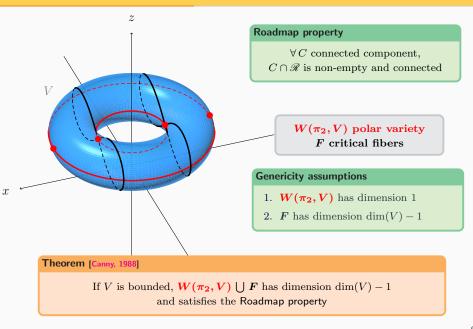
Morse theory

"Scan" $W(\pi_2, V)$ at the critical values of π_1

- We repair the connectivity failures with critical fibers
- We repeat the process at every critical value







 $S \subset \mathbb{R}^n$ semi alg. set of dimension \underline{d} and defined by s polynomials of degree $\leqslant D$

Connectivity result [Canny, 1988]

If V is bounded, $W(\pi_2,V) \cup F$ has dimension d-1 and satisfies the Roadmap property.

Author·s	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	

 $S\subset\mathbb{R}^n$ semi alg. set of dimension \underline{d} and defined by s polynomials of degree $\leqslant D$

Connectivity result [Canny, 1988]

If V is bounded, $W(\pi_2,V)\cup F$ has dimension d-1 and satisfies the Roadmap property.

Author·s	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	

 $S \subset \mathbb{R}^n$ semi alg. set of dimension \underline{d} and defined by s polynomials of degree $\leqslant D$

Connectivity result [Canny, 1988]

If V is bounded, $W(\pi_2,V)\cup F$ has dimension d-1 and satisfies the Roadmap property.

Author·s	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	

 $S \subset \mathbb{R}^n$ semi alg. set of dimension \underline{d} and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, $W(\pi_i,V) \cup F_i$ has dimension $\max(i-1,d-i+1)$ and satisfies the Roadmap property

Author·s	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension \underline{d} and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, $W(\pi_i,V) \cup F_i$ has dimension $\max(i-1,d-i+1)$ and satisfies the Roadmap property

$Author \cdot s$	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets
[Basu & Roy & Safey El Din & Schost, 2014]	$(nD)^{O(n\sqrt{n})}$	Algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension \underline{d} and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, $W(\pi_i,V) \cup F_i$ has dimension $\max(i-1,d-i+1)$ and satisfies the Roadmap property

$\text{Author} \cdot \mathbf{s}$	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets
[Basu & Roy & Safey El Din & Schost, 2014]	$(nD)^{O(n\sqrt{n})}$	Algebraic sets
[Basu & Roy, 2014]	$(nD)^{O(n\log^2 n)}$	Algebraic sets

 $S\subset\mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leqslant D$

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, $W(\pi_i,V) \cup F_i$ has dimension $\max(i-1,d-i+1)$ and satisfies the Roadmap property

Author·s	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets
[Basu & Roy & Safey El Din & Schost, 2014]	$(nD)^{O(n\sqrt{n})}$	Algebraic sets
[Basu & Roy, 2014]	$(nD)^{O(n\log^2 n)}$	Algebraic sets
[Safey El Din & Schost, 2017]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leq D$

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, $W(\pi_i, V) \cup F_i$ has dimension $\max(i - 1, d - i + 1)$ and satisfies the Roadmap property

$Author \cdot s$	Complexity	Assumptions
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets
[Basu & Roy & Safey El Din & Schost, 2014]	$(nD)^{O(n\sqrt{n})}$	Algebraic sets
[Basu & Roy, 2014]	$(nD)^{O(n\log^2 n)}$	Algebraic sets
[Safey El Din & Schost, 2017]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets
[P & Safey El Din & Schost 2024]	$(n^2 D)^{6n} \log_2(d) + O(n)$	Smooth bounded algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leq D$

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, $W(\pi_i, V) \cup F_i$ has dimension $\max(i - 1, d - i + 1)$ and satisfies the Roadmap property

Results based on a theorem in	Assumptions	
[Schwartz & Sharir, 1983]	$(sD)^{2^{O(n)}}$	
[Canny, 1993]	$(sD)^{O(n^2)}$	
[Basu & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$	
[Safey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$	Smooth, bounded algebraic sets
[Basu & Roy & Safey El Din & Schost, 2014]	$(nD)^{O(n\sqrt{n})}$	Algebraic sets
[Basu & Roy, 2014]	$(nD)^{O(n\log^2 n)}$	Algebraic sets
[Safey El Din & Schost, 2017]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets
[P. & Safey El Din & Schost, 2024]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leq D$

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, $W(\pi_i, V) \cup F_i$ has dimension $\max(i - 1, d - i + 1)$ and satisfies the Roadmap property

	Results based on a theorem in	Assur	mptions		
[S	chwartz & Sharir, 1983]	(sI	Removing th	e boundedness)
	[Canny, 1993]	(s)	requires in	nfinitesimals	
[Bas	u & Pollack & Roy, 2000]	s^{d+1}	$D^{O(n^2)}$		
[Safe	ey El Din & Schost, 2011]	(nD)	$O(n\sqrt{n})$	Smooth, bound	led algebraic sets
[Bas	su & Roy & Safey El Din & Schost, 2014]	(nD)	$O(n\sqrt{n})$	Algeb	raic sets
	[Basu & Roy, 2014]	$(nD)^C$	$O(n\log^2 n)$	Algeb	raic sets
[Safe	ey El Din & Schost, 2017]	$(n^2D)^{6n}$	$\log_2(d) + O(n)$	Smooth, bound	led algebraic sets
[P. & S	Safev El Din & Schost, 2024	$(n^2D)^{6n}$	$\log_2(d) + O(n)$	Smooth, bound	led algebraic sets

Connectivity result [Safey Fl Din & Schost 2011]

P. & Safey El Din & Schost, 2024

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leq D$

,	Connectivity result [Saley El Dill & School, 2011]					
	If V is bounded, $W(\pi_i)$, and sat	$V) \cup F_i$ has dimension notisfies the Roadmap properties				
]	Results based on a theorem in	the bounded case	Assumptions			
[Se	chwartz & Sharir, 1983]	(sI Removing th	ne boundedness			
	[Canny, 1993]	requires in	nfinitesimals			
Bas	u & Pollack & Roy, 2000]	$s^{d+1}D^{O(n^2)}$		i		
Safe	ey El Din & Schost, 2011]	$(nD)^{O(n\sqrt{n})}$ Not	polynomial in the output size s			
Bas	u & Roy & Safey El Din ✓ & Schost, 2014	$(nD)^{O(n\sqrt{n})}$	Algebraic sets			
	[Basu & Roy, 2014]	$(nD)^{O(n\log^2 n)} \leftarrow$	Algebraic sets			
Safe	ey El Din & Schost, 2017]	$(n^2D)^{6n\log_2(d)+O(n)}$	Smooth, bounded algebraic sets	Ī		

 $(n^2D)^{6n\log_2(d)+O(n)}$

Smooth, bounded algebraic sets

 $S \subset \mathbb{R}^n$ semi alg. set of dimension d and defined by s polynomials of degree $\leq D$

Connectivity result [Safey El Din & Schost, 2011] If V is bounded, $W(\pi_i, V) \cup F_i$ has dimension $\max(i-1, d-i+1)$ and satisfies the Roadmap property Results based on a theorem in the bounded case [Schwartz & Sharir, 1983] (s1 Removing the boundedness requires infinitesimals

 $(nD)^{O(n\sqrt{n})}$

[Canny, 1993] (s) requir [Basu & Pollack & Roy, 2000] (s) $s^{d+1}D^{O(n^2)}$ [Safey El Din & Schost, 2011] $(nD)^{O(n\sqrt{n})}$

[Basu & Roy & Safey El Dink & Schost, 2014]

[Basu & Roy, 2014] $(nD)^{O(n \log^2 n)}$ [Safey El Din & Schost, 2017] $(n^2D)^{6n \log_2(d)}$ [P. & Safey El Din & Schost, 2024] $(n^2D)^{6n \log_2(d)}$ Necessity of a <u>new</u> theorem

Not polynomial in the output size

Algebraic sets

in the **unbounded** case!

Projection on 2 coordinates

$$\pi_2 \colon \hspace{0.5cm} \mathbb{C}^n \hspace{0.5cm} o \hspace{0.5cm} \mathbb{C}^2 \ ({m x}_1, \ldots, {m x}_n) \hspace{0.5cm} \mapsto \hspace{0.5cm} ({m x}_1, {m x}_2)$$

- $W(\pi_2, V)$ polar variety
- $F_2 = \pi_1^{-1}(\pi_1(K)) \cap V$ critical fibers
- $K = \text{critical points of } \pi_1 \text{ on } W(\pi_2, V)$

Connectivity result [Canny, 1988]

If V is bounded, $W(\pi_2,V) \cup F_2$ has dimension d-1 and satisfies the Roadmap property

Projection on i coordinates

$$\pi_i \colon \mathbb{C}^n \to \mathbb{C}^i \ (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \mapsto (\boldsymbol{x}_1, \dots, \boldsymbol{x}_i)$$

- $W(\pi_i, V)$ polar variety
- $F_i = \pi_{i-1}^{-1}(\pi_{i-1}(K)) \cap V$ critical fibers
- $K = \text{critical points of } \pi_1 \text{ on } W(\pi_i, V)$

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, $W(\pi_i,V) \cup F_i$ has dimension $\max(i-1,d-i+1)$ and satisfies the Roadmap property

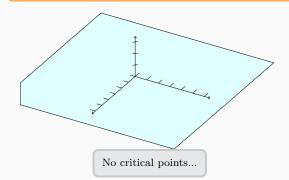
Projection on i coordinates

$$\pi_i \colon \mathbb{C}^n \to \mathbb{C}^i$$
 $(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \mapsto (\boldsymbol{x}_1, \dots, \boldsymbol{x}_i)$

- $W(\pi_i, V)$ polar variety
- $F_i = \pi_{i-1}^{-1}(\pi_{i-1}(K)) \cap V$ critical fibers
- $K = \text{critical points of } \pi_1 \text{ on } W(\pi_i, V)$

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, $W(\pi_i,V) \cup F_i$ has dimension $\max(i-1,d-i+1)$ and satisfies the Roadmap property



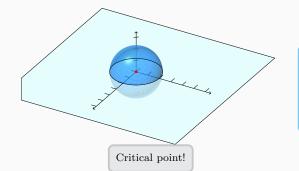
Non-negative proper polynomial map

$$oldsymbol{arphi}_i \colon egin{array}{ccc} \mathbb{C}^n & \longrightarrow & \mathbb{C}^i \ & oldsymbol{x} & \mapsto & (\psi_1(oldsymbol{x}), \ldots, \psi_i(oldsymbol{x})) \end{array}$$

- $F_i = \varphi_{i-1}^{-1}(\varphi_{i-1}(K)) \cap V$ critical fibers.
- $\bullet \ K = \text{critical points of} \ \pmb{\varphi}_1 \ \text{on} \ W(\pmb{\varphi}_i, V)$

Connectivity result [P. & Safey El Din & Schost, 2024]

If V is bounded, $W(\varphi_i,V)\cup F_i$ has dimension $\max(i-1,d-i+1)$ and satisfies the Roadmap property



- → Sard's lemma
- → Thom's isotopy lemma
- → Puiseux series

Assumptions to satisfy in the new result

- (R) sing(V) is finite
- (P) φ_1 is a proper map bounded from below For all $1 \le i \le \dim(V)/2$,
- (N) φ_{i-1} has finite fibers on W_i
- (W) dim $W_i = i 1$ and sing $(W_i) \subset \text{sing}(V)$
- (F) dim $F_i = n d + 1$ and sing (F_i) is finite

Assumptions to satisfy in the new result

- (R) sing(V) is finite
- (P) φ_1 is a proper map bounded from below
- For all $1 \leqslant i \leqslant \dim(V)/2$,
- (N) φ_{i-1} has finite fibers on W_i
- (W) dim $W_i = i 1$ and sing $(W_i) \subset \text{sing}(V)$
- (F) dim $F_i = n d + 1$ and sing (F_i) is finite

Assumption on the input

Assumptions to satisfy in the new result

- (R) sing(V) is finite
- (P) φ_1 is a proper map bounded from below

For all $1 \leqslant i \leqslant \dim(V)/2$,

- (N) φ_{i-1} has finite fibers on W_i
- (W) dim $W_i = i 1$ and sing $(W_i) \subset \text{sing}(V)$
- (F) dim $F_i = n d + 1$ and sing (F_i) is finite

By construction of φ

A successful candidate

Choose generic $(\boldsymbol{a}, \boldsymbol{b}_2, \dots, \boldsymbol{b}_n) \in \mathbb{R}^{n^2}$ and:

$$\varphi = \left(\sum_{i=1}^{n} (x_i - a_i)^2, \ \boldsymbol{b}_2^\mathsf{T} \overrightarrow{\boldsymbol{x}}, \dots, \boldsymbol{b}_n^\mathsf{T} \overrightarrow{\boldsymbol{x}}\right) \text{ where } a_i \in \mathbb{R}, \ \boldsymbol{b}_i \in \mathbb{R}^n$$

It satisfies the assumptions! **NEWS**

Assumptions to satisfy in the new result

- (R) sing(V) is finite
- (P) φ_1 is a proper map bounded from below

For all $1 \leqslant i \leqslant \dim(V)/2$,

- (N) φ_{i-1} has finite fibers on W_i
- (W) dim $W_i = i 1$ and sing $(W_i) \subset \text{sing}(V)$
- (F) dim $F_i = n d + 1$ and sing (F_i) is finite

Generalization of Noether position from

[Safey El Din & Schost, 2003]

A successful candidate

Choose generic $(\boldsymbol{a}, \boldsymbol{b}_2, \dots, \boldsymbol{b}_n) \in \mathbb{R}^{n^2}$ and:

$$\boldsymbol{\varphi} = \left(\sum_{i=1}^n (x_i - a_i)^2 , \ \boldsymbol{b}_2^\mathsf{T} \overrightarrow{\boldsymbol{x}}, \dots, \ \boldsymbol{b}_n^\mathsf{T} \overrightarrow{\boldsymbol{x}}\right) \quad \text{where} \quad a_i \in \mathbb{R}, \quad \boldsymbol{b}_i \in \mathbb{R}^n$$

It satisfies the assumptions! NEW!

Assumptions to satisfy in the new result

- (R) sing(V) is finite
- (P) φ_1 is a proper map bounded from below

For all $1 \leqslant i \leqslant \dim(V)/2$,

- (N) φ_{i-1} has finite fibers on W_i
- (W) dim $W_i = i 1$ and sing $(W_i) \subset \text{sing}(V)$
- (F) dim $F_i = n d + 1$ and sing (F_i) is finite

Jacobian criterion

 \oplus

Thom's transversality theorem

A successful candidate

Choose generic $(\boldsymbol{a}, \boldsymbol{b}_2, \dots, \boldsymbol{b}_n) \in \mathbb{R}^{n^2}$ and:

$$\boldsymbol{\varphi} = \left(\sum_{i=1}^n (x_i - a_i)^2 , \ \boldsymbol{b}_2^\mathsf{T} \overrightarrow{\boldsymbol{x}}, \dots, \ \boldsymbol{b}_n^\mathsf{T} \overrightarrow{\boldsymbol{x}}\right) \quad \text{where} \quad a_i \in \mathbb{R}, \quad \boldsymbol{b}_i \in \mathbb{R}^n$$

It satisfies the assumptions! NEW!

Assumptions to satisfy in the new result

- (R) sing(V) is finite
- (P) φ_1 is a proper map bounded from below

For all $1 \leqslant i \leqslant \dim(V)/2$,

- (N) φ_{i-1} has finite fibers on W_i
- (W) dim $W_i = i 1$ and sing $(W_i) \subset \text{sing}(V)$
- (F) dim $F_i = n d + 1$ and sing (F_i) is finite

Jacobian criterion

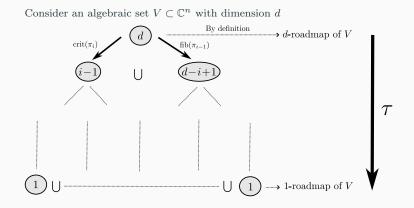
Noether position

A successful candidate

Choose generic $(\boldsymbol{a}, \boldsymbol{b}_2, \dots, \boldsymbol{b}_n) \in \mathbb{R}^{n^2}$ and:

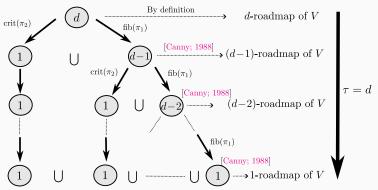
$$\varphi = \left(\sum_{i=1}^{n} (x_i - a_i)^2, \ \boldsymbol{b}_2^{\mathsf{T}} \overrightarrow{\boldsymbol{x}}, \dots, \boldsymbol{b}_n^{\mathsf{T}} \overrightarrow{\boldsymbol{x}}\right) \text{ where } a_i \in \mathbb{R}, \ \boldsymbol{b}_i \in \mathbb{R}^n$$

It satisfies the assumptions! **NEWS**

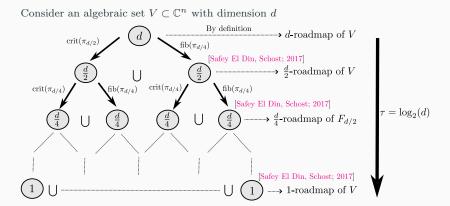


Depth of recursion tree : τ \Rightarrow complexity: $(nD)^{O(n\tau)}$

Consider an algebraic set $V \subset \mathbb{C}^n$ with dimension d

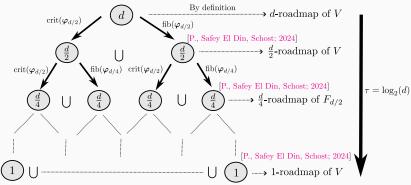


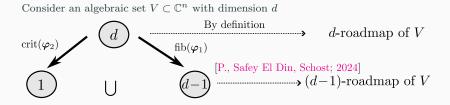
Depth of recursion tree : d \Rightarrow complexity: $(nD)^{O(nd)}$

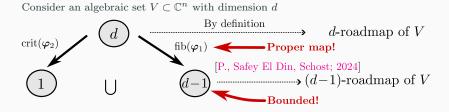


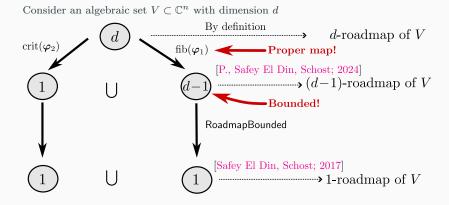
Depth of recursion tree : $\log_2(d)$ \Rightarrow complexity: $(nD)^{O(n \log_2(d))}$

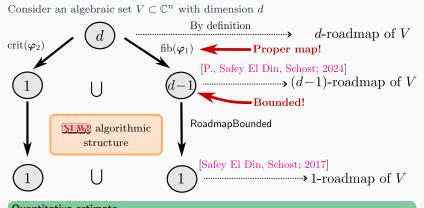
Consider an algebraic set $V \subset \mathbb{C}^n$ with dimension d



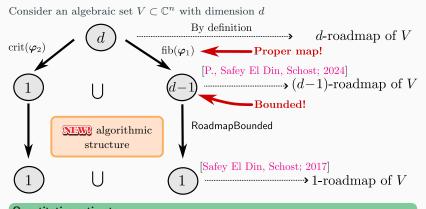




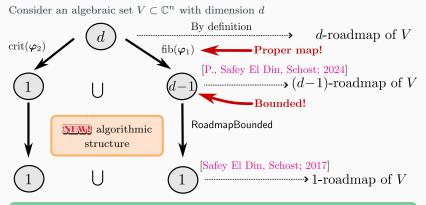




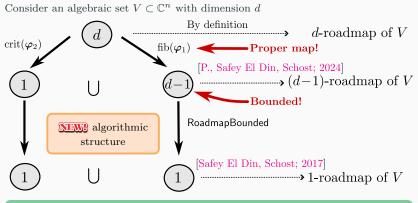
Quantitative estimate		
	Output size	Complexity
RoadmapBounded(fib(φ_1)) Compute crit(φ_2) & fib(φ_1)		
Overall		



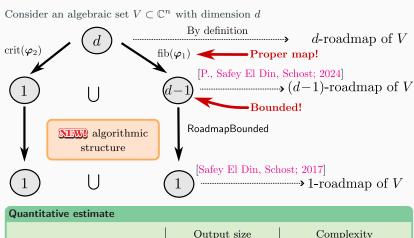
Quantitative estimate		
	Output size	Complexity
RoadmapBounded($\mathrm{fib}(oldsymbol{arphi}_1)$) Compute $\mathrm{crit}(oldsymbol{arphi}_2)$ & $\mathrm{fib}(oldsymbol{arphi}_1)$	$(n^2D)^{4n\log_2 d + O(n)}$	$(n^2D)^{6n\log_2 d + O(n)}$
Overall		



Quantitative estimate		
	Output size	Complexity
RoadmapBounded($\mathrm{fib}(oldsymbol{arphi}_1)$) Compute $\mathrm{crit}(oldsymbol{arphi}_2)$ & $\mathrm{fib}(oldsymbol{arphi}_1)$	$(n^2D)^{4n\log_2 d + O(n)}$ $(nD)^{O(n)}$	$(n^2D)^{6n\log_2 d + O(n)}$ $(nD)^{O(n)}$
Overall		



Quantitative estimate		
	Output size	Complexity
RoadmapBounded($\mathrm{fib}(oldsymbol{arphi}_1)$) Compute $\mathrm{crit}(oldsymbol{arphi}_2)$ & $\mathrm{fib}(oldsymbol{arphi}_1)$	$(n^2D)^{4n\log_2 d + O(n)}$ $(nD)^{O(n)}$	$(n^2D)^{6n\log_2 d + O(n)}$ $(nD)^{O(n)}$
Overall	$(n^2D)^{4n\log_2 d + O(n)}$	$(n^2D)^{6n\log_2 d + O(n)}$

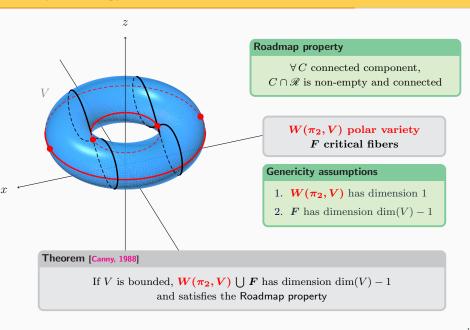


Quantitative estimate		
	Output size	Complexity
RoadmapBounded($\mathrm{fib}(oldsymbol{arphi}_1)$) Compute $\mathrm{crit}(oldsymbol{arphi}_2)$ & $\mathrm{fib}(oldsymbol{arphi}_1)$	$(n^2D)^{4n\log_2 d + O(n)}$ $(nD)^{O(n)}$	$(n^2D)^{6n\log_2 d + O(n)}$ $(nD)^{O(n)}$
Overall	$(n^2D)^{4n\log_2 d + O(n)}$	$(n^2D)^{6n\log_2 d + O(n)}$

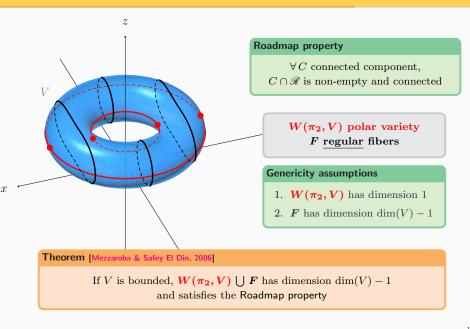
Analysis of the kinematic singularities of a PUMA robot

with J.Capco, M.Safey El Din and P.Wenger

Canny's strategy



Canny's strategy

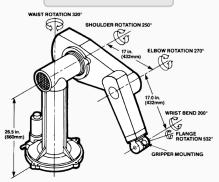


${\sf Matrix}\ {\it M}\ {\sf associated}\ {\sf to}\ {\sf a}\ {\sf PUMA-type}\ {\sf robot}\ {\sf with}\ {\sf a}\ {\sf non-zero}\ {\sf offset}\ {\sf in}\ {\sf the}\ {\sf wrist}$

$(v_3 + v_2)(1 - v_2v_3)$	0	A(v)	$d_3A(v)$	$a_2(v_3^2 + 1)(v_2^2 - 1) - a_3A(v)$	$2d_3(v_3 + v_2)(v_2v_3 - 1)$
0	$v_3^2 + 1$	0	$2a_{2}v_{3}$	0	$(a_3 - a_2)v_3^2 + a_2 + 2a_3$
0	1	0	0	0	$2a_3$
0	0	1	0	0	0
v_4	$1 - v_4^2$	0	$d_4(1-v_4^2)$	$-2d_{4}v_{4}$	0
$(v_4^2 - 1)v_5$	$4v_4v_5$	$(1 - v_5^2)(v_4^2 + 1)$	$(1 - v_5^2)(v_4^2 - 1)d_5 + 4d_4v_4v_5$	$2d_5v_4(1-v_5^2) + 2d_4v_5(1-v_4^2)$	$-2d_5v_5(v_4^2+1)$

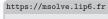
https://msolve.lip6.fr

- \leadsto Multivariate system solving
- → Real roots isolation

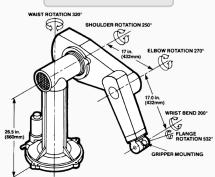


${\sf Matrix}\ {\it M}\ {\sf associated}\ {\sf to}\ {\sf a}\ {\sf PUMA-type}\ {\sf robot}\ {\sf with}\ {\sf a}\ {\sf non-zero}\ {\sf offset}\ {\sf in}\ {\sf the}\ {\sf wrist}$

	$(v_3 + v_2)(1 - v_2v_3)$	0	A(v)	$d_3A(v)$	$a_2(v_3^2 + 1)(v_2^2 - 1) - a_3A(v)$	$2d_3(v_3 + v_2)(v_2v_3 - 1)$
	0	$v_3^2 + 1$	0	$2a_{2}v_{3}$	0	$(a_3 - a_2)v_3^2 + a_2 + 2a_3$
-	0	1	0	0	0	$2a_3$
	0	0	1	0	0	0
	v_4	$1 - v_4^2$	0	$d_4(1-v_4^2)$	$-2d_{4}v_{4}$	0
	$(v_4^2 - 1)v_5$	$4v_{4}v_{5}$	$(1-v_5^2)(v_4^2+1)$	$(1-v_5^2)(v_4^2-1)d_5+4d_4v_4v_5$	$2d_5v_4(1-v_5^2) + 2d_4v_5(1-v_4^2)$	$-2d_5v_5(v_4^2+1)$



- \leadsto Multivariate system solving
- → Real roots isolation



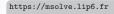
First step

Max. deg without splitting: 1858

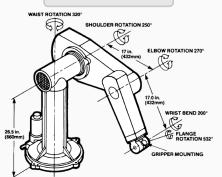
l		Locus	Degrees	R-roots	Tot. time
		Critical points	400 & 934	96 & 182	9.7 min
		Critical curves	182 & 220	∞	3h46
	1				

${\sf Matrix}\ {\it M}\ {\sf associated}\ {\sf to}\ {\sf a}\ {\sf PUMA-type}\ {\sf robot}\ {\sf with}\ {\sf a}\ {\sf non-zero}\ {\sf offset}\ {\sf in}\ {\sf the}\ {\sf wrist}$

$(v_3 + v_2)(1 - v_2v_3)$	0	A(v)	$d_3A(v)$	$a_2(v_3^2 + 1)(v_2^2 - 1) - a_3A(v)$	$2d_3(v_3 + v_2)(v_2v_3 - 1)$	
0	$v_3^2 + 1$	0	$2a_{2}v_{3}$	0	$(a_3 - a_2)v_3^2 + a_2 + 2a_3$	
0	1	0	0	0	$2a_3$	
0	0	1	0	0	0	
v_4	$1 - v_4^2$	0	$d_4(1-v_4^2)$	$-2d_{4}v_{4}$	0	
$(v_4^2 - 1)v_5$	$4v_{4}v_{5}$	$(1-v_5^2)(v_4^2+1)$	$(1-v_5^2)(v_4^2-1)d_5+4d_4v_4v_5$	$2d_5v_4(1-v_5^2) + 2d_4v_5(1-v_4^2)$	$-2d_5v_5(v_4^2+1)$	



- → Multivariate system solving
- → Real roots isolation



First step

Max. deg without splitting: 1858

		0 & 934 96 & 182 9.7 n		
Locus	Degrees	R-roots	Tot. time	
Critical points	400 & 934	96 & 182	9.7 min	
Critical curves	182 & 220	∞	3h46	

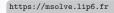
Recursive step over 95 fibers

Data are for one fiber

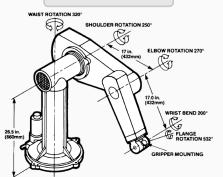
Locus	Degrees	R-roots	Total time
Critical points	38	14	6.4 min
Critical curves	21	∞	9.6 min

${\sf Matrix}\ {\it M}\ {\sf associated}\ {\sf to}\ {\sf a}\ {\sf PUMA-type}\ {\sf robot}\ {\sf with}\ {\sf a}\ {\sf non-zero}\ {\sf offset}\ {\sf in}\ {\sf the}\ {\sf wrist}$

$(v_3 + v_2)(1 - v_2v_3)$	0	A(v)	$d_3A(v)$	$a_2(v_3^2 + 1)(v_2^2 - 1) - a_3A(v)$	$2d_3(v_3 + v_2)(v_2v_3 - 1)$	
0	$v_3^2 + 1$	0	$2a_{2}v_{3}$	0	$(a_3 - a_2)v_3^2 + a_2 + 2a_3$	
0	1	0	0	0	$2a_3$	
0	0	1	0	0	0	
v_4	$1 - v_4^2$	0	$d_4(1-v_4^2)$	$-2d_{4}v_{4}$	0	
$(v_4^2 - 1)v_5$	$4v_{4}v_{5}$	$(1-v_5^2)(v_4^2+1)$	$(1-v_5^2)(v_4^2-1)d_5+4d_4v_4v_5$	$2d_5v_4(1-v_5^2) + 2d_4v_5(1-v_4^2)$	$-2d_5v_5(v_4^2+1)$	



- → Multivariate system solving
- → Real roots isolation



First step

Max. deg without splitting: 1858

	Locus	Degrees	R-roots	Tot. time
	Critical points	400 & 934	96 & 182	9.7 min
	Critical curves	182 & 220	∞	3h46

Recursive step over 95 fibers

Data are for one fiber

Locus	Degrees	R-roots	Total time
Critical points	38	14	6.4 min
Critical curves	21	∞	9.6 min

Roadmap computation NEW!

Output degree: 4847 Time: 4h10 (msolve)

A PUMA 560 [Unimation, 1984]

Perspectives

Algorithms

Roadmap algorithms:

- Adapt the algorithms to <u>structured</u> systems: <u>quadratic</u> case
 - (J.A.K.Elliott, M.Safey El Din, É.Schost)
- Generalize the connectivity result to <u>semi</u>-algebraic sets
- \downarrow Design optimal roadmap algorithms with complexity exponential in O(n)

Connectivity of s.a. curves:

Adapt to algebraic curves given as union

(A.Poteaux)

 \downarrow Generalize to <u>semi</u>-algebraic curves

Applications

Analyze challenging class of robots

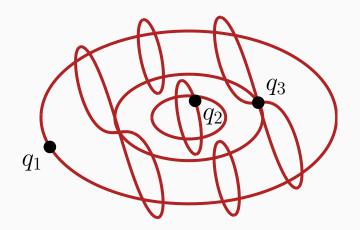
(D.Salunkhe, P.Wenger)

↓ Obtain <u>practical</u> version of modern roadmap algorithms

Software

- Computational real algebraic geometry library as part of AlgebraicSolving.jl
 - (C.Eder, R.Mohr, R.P., M.Safey El Din)
- \downarrow Implement a ready-to-use toolbox for roboticians

Union of curves



Reduce data size

