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Algorithms for polynomial systems with real variables

Semi-algebraic sets

Real solutions of systems of polynomial equations and inequalities
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Algorithms for polynomial systems with real variables

Semi-algebraic sets

Real solutions of systems of polynomial equations and inequalities

U\

Fundamental algorithmic problems

Project: what is the possible set of values?
Sample: are there any solutions?

Connect: are two points connected?
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A challenging application in robotics
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Complexities of the algorithmics of semi-algebraic sets

Semi-algebraic set S

Defined by s polynomial (equations+inequalities) with n variables of deg < D

4y + x> — 42?2 — 22 —8=0
—-2<z<0

General-purpose algorithm [Collins; '75] \/\

Complexity: (sD)2°"”

Fundamental algorithmic problem

Project S onto t coordinates ~- snt1po(nt) [Basu-Pollack-Roy, '96] Optimal
Sample points of S ~~ smDO(m) [Basu-Pollack-Roy, *98] Optimal

L 2 .
Connect two points in S~ snt1po(n®) [Basu-Pollack-Roy, ’00] Not optimal



Computing connectivity properties: Roadmaps
Q[Canny, 1988] Compute #Z C S one-dimensional, sharing its connectivity
Roadmap of (S, P)

A semi-algebraic curve Z C S, containing query points (q1,...,qn) S.t.
for all connected components C' of S: C NZ is non-empty and connected

Proposition

g; and g; are path-connected in S <= they are in #

Problem reduction

Arbitrary dimension ——=>  Dimension 1
RoADMAP




Computing connectivity properties: Roadmaps
Q[Canny, 1988] Compute # C S one-dimensional, sharing its connectivity
Roadmap of (S, P)

A semi-algebraic curve Z C S, containing query points (q1,...,qn) S.t.
for all connected components C' of S: C NZ is non-empty and connected

Proposition

g; and g; are path-connected in S <= they are in # <= they are in ¢4

Problem reduction

Arbitrary dimension ——=>  Dimension 1 ——> Finite graph ¥
ROADMAP Topology




Roadmap algorithms for
unbounded algebraic sets

joint work with M. Safey El Din and E. Schost



V C connected component,
C' N Z is non-empty and connected




Canny’s strategy

Roadmap property

V C connected component,
C N Z is non-empty and connected

Projection through:
m: (21, .., 2n) — (z1,22)
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Roadmap property

V C connected component,
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W (72, V) critical locus of 7.

Intersects all the
connected components of V'
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V C connected component,
Lol C N Z is non-empty and connected

‘ “Scan” W (w2, V') at the critical values
§§§§§ — of mp

o We repair the connectivity failures
with critical fibers

o We repeat the process at
every critical value
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1. W (w2, V) has dimension 1
2. F has dimension dim(V) — 1




Canny’s strategy

V C' connected component,
C N Z is non-empty and connected

W (w2, V) polar variety
F critical fibers

1. W (w2, V) has dimension 1
2. F has dimension dim(V) — 1

Theorem [Canny, 1988]

If V is bounded, W (72, V') |J F has dimension dim(V) — 1
and satisfies the Roadmap property



On the complexity of computing roadmaps

S C R"™ semi alg. set of dimension d and defined by s polynomials of degree < D

If V is bounded, W (w2, V) U F has dimension d — 1
and satisfies the Roadmap property.

Author-s Complexity Assumptions

[Schwartz & Sharir, 1983] (SD)2O(")
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S C R"™ semi alg. set of dimension d and defined by s polynomials of degree < D
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On the complexity of computing roadmaps

S C R™ semi alg. set of dimension d and defined by s polynomials of degree < D

Connectivity result [Canny, 1988]

If V is bounded, W (72, V) U F has dimension d — 1
and satisfies the Roadmap property.

Author-s Complexity Assumptions
[Schwartz & Sharir, 1983] (SD)QO(")
[Canny, 1993] (SD)O(nz)
[Basu & Pollack & Roy, 2000] sd+1 pOo(n?)




On the complexity of computing roadmaps

S C R™ semi alg. set of dimension d and defined by s polynomials of degree < D

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, W (m;, V) U F; has dimension max(i — 1,d — i+ 1)
and satisfies the Roadmap property

Author-s Complexity Assumptions
[Schwartz & Sharir, 1983] (SD)2O(")
[Canny, 1993] (SD)O(nz)
[Basu & Pollack & Roy, 2000] sd+1 pOo(n?)

[Safey El Din & Schost, 2011]

(nD)Om\/H)

Smooth, bounded algebraic sets
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On the complexity of computing roadmaps

S C R™ semi alg. set of dimension d and defined by s polynomials of degree < D

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, W (m;, V) U F; has dimension max(i — 1,d — i + 1)
and satisfies the Roadmap property
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e W (w2, V) polar variety
T2t cn — c? ° Fr = 7r1_1(7r1 (K)) NV critical fibers

(@1, ) = (T1,%2) e K = critical points of w1 on W (w2, V)

If V is bounded, W (2, V') U F» has dimension d — 1
and satisfies the Roadmap property




On the extension of Canny’s result

Projection on i coordinates o W(m;, V) polar variety

i cr _ Ct o F; = 71';11 (mi—1(K)) NV critical fibers

(1, s®n) = (@1, @) e K = critical points of 1 on W (m;, V)

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, W (m;, V) U F; has dimension max(i — 1,d — i+ 1)
and satisfies the Roadmap property



On the extension of Canny’s result

Projection on i coordinates o W(m;, V) polar variety

i cn — Ct o [ = 71';11 (mi—1(K)) NV critical fibers

(1, s®n) = (@1, @) e K = critical points of 1 on W (m;, V)

Connectivity result [Safey El Din & Schost, 2011]

If V is bounded, W (m;, V) U F; has dimension max(i — 1,d — i+ 1)
and satisfies the Roadmap property

No critical points...



On the extension of Canny’s result

Non-negative proper polynomial map N TR T e ——
— i

@, Cn Ci o [ = 50;31 (¢;_1 (K)) NV critical fibers.
i v
x = (=), .., Yi(x)) e K = critical points of ¢, on W (e,,V)

IV is bounded; W (i, V) U F; has dimension max(:s — 1,d — i + 1)
and satisfies the Roadmap property

~» Sard’s lemma
~» Thom’s isotopy lemma

~ Puiseux series

Critical point!



(R) sing(V) is finite

(P) ¢1 is a proper map bounded from below

For all 1 < < dim(V)/2,

(N) ¢i—1 has finite fibers on W;

(W) dim W; =i — 1 and sing(W;) C sing(V)

(F) dim F; = n —d + 1 and sing(F;) is finite




How to use it?

(R) sing(V) is ﬁnite\/
(P) ¢1 is a proper map bounded from below

For all 1 < < dim(V)/2, Assumption on

the input

(N) ¢;—1 has finite fibers on W;

(W) dim W; =i — 1 and sing(W;) C sing(V)

(F) dim F; = n —d + 1 and sing(F;) is finite




How to use it?

Assumptions to satisfy in the new result

(R) sing(V) is ﬁnit()\/ R

(P) 1 is a proper map bounded from below\/

For all 1 <4 < dim(V)/2, By construction
of ¢

(N) ¢;—1 has finite fibers on W;
(W) dim W; =4 — 1 and sing(W;) C sing(V)

(F) dim F; =n — d+ 1 and sing(F;) is finite

A successful candidate

Choose generic (a,bz,...,by) € R and:

n
p = (Z(ml — ai)2 , bg? S, bl?) where a; € R, b; € R"

=1

It satisfies the assumptions! NEWJY



How to use it?
Assumptions to satisfy in the new result

(R) sing(V) is ﬁnit()\/ R

(P) 1 is a proper map bounded from below\/

For all 1 < i < dim(V)/2, Generalization of
Noether position from
[Safey EI Din & Schost, 2003]
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(P) 1 is a proper map bounded from below\/

For all 1 <4 < dim(V)/2, Jacobian criterion
(N) ¢;i—1 has finite fibers on W; Thom's transversality
(W) dim W; =i — 1 and sing(W;) C sing(V) \/ theorem

(F) dim F; =n — d+ 1 and sing(F;) is finite

A successful candidate

Choose generic (a,bz,...,by) € R and:

n
p = (Z(ml — ai)2 , bg? S, bl?) where a; € R, b; € R"

=1

It satisfies the assumptions! NEWJY



How to use it?

(R) sing(V) is ﬁnite\/
(P) 1 is a proper map bounded from below\/

For all 1 < < dim(V)/2, Jacobian criterion

52
Noether position

(N) ;—1 has finite fibers on W;

(W) dim W; =4 — 1 and sing(W;) C sing(V) \/

(F) dim F; = n — d + 1 and sing(F;) is ﬁnite\/

Choose generic (a,ba,...,byp) € R"” and:

n
= (Z(mz — ai)z7 b;?, e bI?) where a; €R, b; € R"
i=1

[It satisfies the assumptions! ]




An algorithm for unbounded algebraic set

Consider an algebraic set V' C C™ with dimension d

@ By definition d roadmap of V
crit(ﬂV fib(ri 1)
@ v

@ U E | | U @ --------- > l-roadmap of V' v

Depth of recursion tree : 7

= complexity: (nD)°("7)

10



An algorithm for unbounded algebraic set

Consider an algebraic set V' C C™ with dimension d

crit( w/ @ \ﬁb )

U

By definition

d-roadmap of V'

Canny; 1988
[Canr: ] > (d—1)-roadmap of V

crit(ma) fib(m)

(d—2)-roadmap of V'

@ R Q
¢ ¢ Vb(ﬂ'l)
Canny; 1988] y
@ U @ I U @ --------- »>1-roadmap of V
Depth of recursion tree : d

= complexity: (nD)°"d)

[( anny; 1988] T=d



An algorithm for unbounded algebraic set

Consider an algebraic set V' C C™ with dimension d
By definition

) ®
sm\ El Din, Schost; 2017]
> d—rocxdmap of V
crit(mqy4) hl) Td/4 crit(mq, ‘b T4/4)
/ / [Safey El Din, Schost; 2017]
oxt ' @ U @ trostmanot i

d-roadmap of V'

Safey El Din, Schost; 2017]

@ U U @ ........ > l-roadmap of V

Depth of recursion tree : log,(d)

= complexity: (n.D)O(nlog2(d))

T = log,(d)

Y

10



An algorithm for unbounded algebraic set

Consider an algebraic set V' C C™ with dimension d

By definition
d-roadmap of V

it( <pdV @ \LPd/z)
., Safey El Din, Schost; 2024]
U > g-roadmap of V
Cl'it(%l/z/ V(‘Pdm) Cl'iL(LP.z/y ‘b(ﬁarlﬂ)
[P., Safey El Din, Schost; 2024]
. U . ‘ U . 4_roadmap of Fys

£ [P., Safey El Din, Schost; 2024]

U @ --------- > l-roadmap of V'

10



An algorithm for unbounded algebraic set

Consider an algebraic set V' C C™ with dimension d

By definition
Y > d-roadmap of V'

crit( Lp/ @ \ )
[P., Safey El Din, Schost; 2024]

@ U (d 1)-roadmap of V

10



An algorithm for unbounded algebraic set

Consider an algebraic set V' C C™ with dimension d

By definition
Y >  d-roadmap of V'

crit( @% @ \ (1) = Proper map!
[P., Safey El Din, Schost; 2024]

@ U . > (d—1)-roadmap of V
\Bounded'

10



An algorithm for unbounded algebraic set

Consider an algebraic set V' C C™ with dimension d

By definition
Y >  d-roadmap of V'

crit( pr @ \ (1) e Proper map!
[P., Safey El Din, Schost; 2024]

> (d—1)-roadmap of V
\Bounded'

RoadmapBounded

S(lf(\y El Din, Schost; 2017]
@ U 1-roadmap of V

10



An algorithm for unbounded algebraic set

Consider an algebraic set V' C C” with dimension d

By definition
Y >  d-roadmap of V'

crit( Lp/ @ \ (1) e Proper map!
[P., Safey El Din, Schost; 2024]

@ U ’ > (d—1)-roadmap of V
\Bounded'

NEWS algorithmic RoadmapBounded
structure

[Safey El Din, Schost; 2017]
@ U @ 1-roadmap of V

Quantitative estimate

Output size Complexity

RoadmapBounded(fib(1))
Compute crit(p2) & fib(e1)

Overall

10



An algorithm for unbounded algebraic set

Consider an algebraic set V' C C” with dimension d

By definition
Y >  d-roadmap of V'

crit( Lp/ @ \ (1) e Proper map!
[P., Safey El Din, Schost; 2024]

@ U ’ > (d—1)-roadmap of V
\Bounded'

NEWS algorithmic RoadmapBounded
structure

[Safey El Din, Schost; 2017]
@ U @ 1-roadmap of V

Quantitative estimate

Output size Complexity

RoadmapBounded(fib(1)) (n2D)4nlog d+O(n) (n2D)bn loga d+0(n)
Compute crit(p2) & fib(e1)

Overall

10



An algorithm for unbounded algebraic set

Consider an algebraic set V' C C” with dimension d

By definition
Y >  d-roadmap of V'

crit( Lp/ @ \ (1) e Proper map!
[P., Safey El Din, Schost; 2024]

@ U ’ > (d—1)-roadmap of V
\Bounded'

NEWS algorithmic RoadmapBounded
structure

[Safey El Din, Schost; 2017]
@ U @ 1-roadmap of V

Quantitative estimate

Output size Complexity
RoadmapBounded(fib(1)) (n2D)4nlog d+O(n) (n2D)bn loga d+0(n)
Compute crit(p2) & fib(e1) (nD)O (") (nD)C™)

Overall

10



An algorithm for unbounded algebraic set

Consider an algebraic set V' C C” with dimension d

By definition
Y >  d-roadmap of V'

crit( Lp/ @ \ (1) e Proper map!
[P., Safey El Din, Schost; 2024]

@ U ’ > (d—1)-roadmap of V
\Bounded'

NEWS algorithmic RoadmapBounded
structure

[Safey El Din, Schost; 2017]
@ U @ 1-roadmap of V

Quantitative estimate

Output size Complexity
RoadmapBounded(fib(1)) (n2D)4nlog d+O(n) (n2D)bn loga d+0(n)
Compute crit(p2) & fib(e1) (nD)O (") (nD)C™)

Overall (nQD)4n logy d+0O(n) (nQD)G” logy d+0O(n)

10



An algorithm for unbounded algebraic set

Consider an algebraic set V' C C” with dimension d

By definition
Y >  d-roadmap of V'

crit( Lp/ @ \ (1) e Proper map!
[P., Safey El Din, Schost; 2024]

@ U ’ > (d—1)-roadmap of V
\Bounded'

NEWS algorithmic RoadmapBounded
structure

[Safey El Din, Schost; 2017]
@ U @ 1-roadmap of V

Quantitative estimate

Output size Complexity
RoadmapBounded(fib(1)) (n2D)4nlog d+O(n) (n2D)bn loga d+0(n)
Compute crit(p2) & fib(e1) (nD)O (") (nD)C™)

Overall (nzD)4w” logz d+0(n)

10



Analysis of the kinematic
singularities of a PUMA robot

with J.Capco, M.Safey El Din and P.Wenger



Canny’s strategy

z

V C' connected component,
C N Z is non-empty and connected

W (72,V) polar variety
F' critical fibers

1. W (w2, V) has dimension 1

2. F has dimension dim(V) — 1

Theorem [Canny, 1988]

If V is bounded, W (72, V') |J F has dimension dim(V) — 1
and satisfies the Roadmap property
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Canny’s strategy

z

V C' connected component,
C N Z is non-empty and connected

W (m2,V) polar variety
F regular fibers

1. W (w2, V) has dimension 1
2. F has dimension dim(V) — 1

Theorem [Mezzaroba & Safey El Din, 2006]

If V is bounded, W (72, V') |J F has dimension dim(V) — 1
and satisfies the Roadmap property
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Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist

(v3 +v2)(1 — vavs) 0 A(v) d3A(v) az(v? +1)(v3 — 1) — azA(v)  2d3(vs + v2)(vavs — 1)
0 1/§ + 1 0 2a2v3 0 (a3 ag)v;f +az + 2a3
0 1 0 0 0 2a3
0 1 0 0 0
vy 0 da(1 —v3) —2d4vy 0
(v3 —1)vs 1—v2)(v]+1) (1—v2)(v}—1)ds +4dsvavs 2dsv4(1 — v2) + 2davs(1 — v3) —2d5v5(v3 + 1)

https://msolve.lip6.fr

~» Multivariate system solving
~~ Real roots isolation

WAIST ROTATION 320°

12

A PUMA 560 [Unimation, 1984]



Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist

(v3 4+ v2) (1 — vavs) 0 A(v) d3A(v) az(v? +1)(v3 — 1) — azA(v)  2d3(vs + v2)(vavs — 1)
0 1/§ +1 0 2a2v3 0 (a3 ag)v;f +az + 2a3
0 1 0 0 0 2a3
0 0 1 0 0 0
o 1—v? 0 dsy(1—v3) —2d4v4 0
4 —2d5v5(v3 + 1)

1—v2)(v]+1) (1—v2)(v}—1)ds +4dsvavs 2dsv4(1 — v2) + 2davs(1 — v3)

https://msolve.lip6.fr First step

~» Multivariate system solving
Max. deg without splitting: 1858

~+ Real roots isolation
Locus Degrees R-roots Tot. time
wasTROT onam” Critical points | 400 & 934 | 96 & 182 | 9.7min
Critical curves 182 & 220 [e'9) 3h46

17.01n.
(432mm)

)
)v:gusun 200°
26.5in. y ([ FLANGE
(ssomm) d - 7 ROTATION 532°

- o
GRIPPER MOUNTING

A PUMA 560 [Unimation, 1984]



Roadmap computation for robotics

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist
az(v? +1)(v3 — 1) — azA(v)  2d3(vs + v2)(vavs — 1)

(v3 4 v2)(1 — v2v3) 0 A(v) dzA(v)
0 v +1 0 2av3 0 (a3 — a2)v? + a2 + 2a3
0 1 0 0 0 2a3
0 0 1 0 0 0
vy 1—v3 0 dsy(1—v3) —2d4vy 0
(v3 —1)vs dvgvs (L—v2)(v3+1) (1 —0v2)(v] — 1)ds +4davavs  2dsva(1l — v2) + 2dgvs (1 — v3) —2d5v5(v3 + 1)
https://msolve.lip6.fr First step
~» Multivariate system solving ) o
s Bheail weehs fealkiiem Max. deg without splitting: 1858
Locus Degrees R-roots Tot. time
wasTROT onam” Critical points | 400 & 934 | 96 & 182 | 9.7min
Critical curves 182 & 220 [e'9) 3h46
Recursive step over 95 fibers
Data are for one fiber
Locus Degrees | R-roots | Total time
Critical points 38 14 6.4 min
Critical curves 21 e} 9.6 min

PUMA 560 [Unimation, 1984]

b=
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Roadmap computation for robotics

A

Matrix M associated to a PUMA-type robot with a non-zero offset in the wrist

(v3 + v2)(1 — vaus) 0

0 vZ+1

0 1

0 0

v 102
(v3 —1)vs dvgvs

(13 +1)

A(v)
0

0
1
0

https://msolve.lip6.fr

~» Multivariate system solving

~+ Real roots isolation

WAIST ROTATION 320°

ELBOW ROTATION 270°
)

17.01n.
(432mm)

WRIST BEND 200°

5 FLANGE
7 ROTATION 532°

GRIPPER MOUNTING

PUMA 560 [Unimation, 1984]

d3 A(v) az(v3 +1)(v3 —1) —azA(v)  2d3(vs + v2)(v2vs — 1)
2a2v3 0 (a3 llg)’U§ +az + 2a3
0 0 2a3
0 0 0
dsy(1—v3) —2d4v4 0
(1 —v2)(v] — 1)ds + 4dgvavs  2d5v4(1 — v2) + 2dsvs(1 — v3) —2d5v5(v3 + 1)
First step
Max. deg without splitting: 1858
Locus Degrees R-roots Tot. time
Critical points 400 & 934 96 & 182 9.7 min
Critical curves 182 & 220 [e'9) 3h46
Recursive step over 95 fibers
Data are for one fiber
Locus Degrees | R-roots | Total time
Critical points 38 14 6.4 min
Critical curves 21 e} 9.6 min

Roadmap computation [NEWJY

Output degree: 4847
Time: 4h10 (msolve)
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Perspectives

Roadmap algorithms:
| Adapt the algorithms to structured systems: quadratic case
(J-A.K_.Elliott, M.Safey EI Din, E.Schost)
| Generalize the connectivity result to semi-algebraic sets
1 Design optimal roadmap algorithms with complexity exponential in O(n)
Connectivity of s.a. curves:
| Adapt to algebraic curves given as union (A.Poteaux)

1 Generalize to semi-algebraic curves

| Analyze challenging class of robots (D.Salunkhe, P.Wenger)
| Obtain practical version of modern roadmap algorithms

| Curves: subresultant/GCD computations deg ~ 100 (now) — ~ 200 (target)

| Computational real algebraic geometry library as part of AlgebraicSolving.jl
(C.Eder, R.Mohr, R.P., M.Safey El Din )

| Implement a ready-to-use toolbox for roboticians




Union of curves




ide view

S

15



	Roadmap algorithms for unbounded algebraic sets  joint work with M. Safey El Din and É. Schostsecroadmap
	Analysis of the kinematic singularities of a PUMA robot  with J.Capco, M.Safey El Din and P.Wengersecpuma

