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Main results

Main Theorem

Given a knot, there exists a manifold M ⊂ Rd and a closed curve γ ⊂ Rd such that
identifying the ends of the l-vineyard of d(·, γ(t))|M will yield knot, which contains the
given knot (there are some spurious components that will have to be removed).

Main Corollary

Monodromy of any order k can be created in the l-vineyard of the radial distance
function restricted to a manifold, M ⊂ Rd .



Preliminaries



Persistence
The example S1 × Sl



Extended Persistence
The example S1 × Sl



Vineyards

▶ Persistence is stable with respect to small perturbations
to the filtration [Cohen-Steiner et al., 2005]

▶ Therefore we can study persistence arising from a
1-parameter family of functions, ft : M → R for
t ∈ [0,T ]

▶ We can “stack” the persistence diagrams according to t
and trace points in diagrams as vines through the
Vineyard of diagrams [Cohen-Steiner et al., 2006]



Monodromy

▶ Monodromy is the effect where a loop in a base
space may not lift to a loop in a covering or fibre
bundle

▶ Let C : X̃ → X be a covering map

▶ For a curve γ : [0, 2π] → X , we write γ̃ for (one of)
its lift(s)

▶ If γ is a loop and γ̃(0) ̸= γ̃(2π), then we say that γ
exhibits monodromy (at the starting point)

▶ We say γ exhibits monodromy of order k if k is the

smallest positive integer such that γ̃k(0) = γ̃k(2πk),
for a concatenated loop γk = γ ◦ · · · ◦ γ︸ ︷︷ ︸

k



Definitions and previous work



Previous work

▶ Monodromy in TDA was observed in the context of multiparameter persistence by
Cerri, Ethier, and Frosini (2013). Recent follow-up in Scaramuccia & Mortain (
2025).

▶ Independently it was found in (single parameter) persistence by Arya, Giunti,
Hickok, Kanari, McGuire, and Turner (2024).
Their example was constructed with the persistent homology transform.

▶ Onus, Nina, and Turkes (2024) generalized persistent homology transform to
arbitrary dimension, i.e. instead of distance in a single direction, distance to an
affine flat.



Radial Distance Function

We consider an extreme version and consider the distance to a point:

▶ Let M ⊂ Rd . We define the radial distance function to be d(·, x)|M : M → R
that is the Euclidean function from x restricted to M ⊂ Rd .



Previous work on the distance function

▶ Bruce, Giblin, and Gibson (1985) studied the distance function d(·, x)|M from a
singularity theory perspective. This yields the symmetry set: The set of all points
in the ambient space such that a sphere centred at this point is tangent to M in
multiple places.

▶ Yomdin (1981) and Mather (1983) studied the singularities of the distance to the
manifold d(·,M), that is the singular structure of the medial axis. The medial
axis (Erdős (1945), Federer (1959)) is a subset of the symmetry set and consist of
all point in the ambient space for which there is no unique closest point on the
manifold.



From the Radial Distance Function to Vineyards

▶ Let d(·, x)M : M → R be the radial distance function from x restricted to
M ⊂ Rd

▶ Setting x = γ(t) for γ : [0, 2π] → Rd , we obtain a family of filtrations,
d(·, γ(t))M

▶ We call γ the observation loop

▶ The closed vineyard map

CVM : S1 → S1 ×Dgm

t → (t,Dgm(d(·, γ(t))M))

is a covering map of γ ≃ S1



Monodromy in Vineyards

Arya et al.’s example (adjusted to our setting)

▶ The vines induce a map from
Dgml(d(·, γ(0))M) to itself, which permutes
the points in the persistence diagram

▶ A vineyard demonstrates monodromy of order
k if k is the smallest integer k > 0 such that
applying this permutation k times yields the
identity permutation

▶ The spiral construction exhibits monodromy of
order 3
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Monodromy in Vineyards

Arya et al.’s example (adjusted to our setting)

▶ The vines induce a map from
Dgml(d(·, γ(0))M) to itself, which permutes
the points in the persistence diagram

▶ A vineyard demonstrates monodromy of order
k if k is the smallest integer k > 0 such that
applying this permutation k times yields the
identity permutation (we connect along the
diagonal in an ‘optimal’ way)

▶ The spiral construction exhibits monodromy of
order 3



Monodromy in Vineyards

(Non-extended) Persistence Extended Persistence



Arya et al. and an open question

▶ [Arya et al., 2024] investigated monodromy in 0-vineyards of objects embedded in
R2 through all height filtrations

▶ Open question: demonstrate monodromy in higher dimensional Vineyards

As we’ll see the answer to this question is a corollary of (the proof of) the main result.



Knots and braids



Braids and knots

▶ A braid on m strands is the equivalence class of the
disjoint union of m intervals, Bi : I → D2 × I ,
monotonically increasing with respect to I , such that
the end points are a permutation of the start points,
under ambient braid isotopy

▶ By identifying the ends of the interval and mapping to
the canonical solid torus in R3, we obtain a closed braid

Alexander’s Theorem [Alexander, 1923]

Every knot or link is equivalent to a closed braid

We have a polynomial bound on the number of strands and
crossings in the braid



Main result and proof



Main theorem

Given a braid B, there exists an M ⊂ Rd and a closed curve γ ⊂ Rd such that
identifying the ends of the ℓ-vineyard of d(·, γ(t))M will yield a braid B ′, which is
equivalent to B after removing some spurious unbraided connected components.

▶ The proof is constructive, the choices of not only M and γ are critical

▶ Different γ can yield different braids (incorrect crossings) in the vineyard



Construction

Step 1:

▶ A given knot corresponds to a closed braid
B ⊂ R3, by Alexander

▶ Assume that the closed braid B has K
components and s strands

▶ Represent B as an almost annular closed
braid and strands follow fixed radii

▶ Introduce an additional twist per
connected component of the closed braid,
this introduces an additional O(s · K )
crossings and total n = s + K strands



Step 2:

▶ Further deform B so that all crossings
occur at regular intervals within an angular
fraction of the total annulus’ period

Step 3:

▶ Twist the annulus, outside the crossing
region, so that it would intersect the
original annulus orthogonally

Step 4:

▶ Set the observation loop γ to follow the
the twisted annulus at some fixed distance
from the core of the annulus



Lemma
At this point of the construction we have a closed
braid near an annulus. Because the annulus can be
very thin (small difference between inner and outer
radius), it is close to a circle.

Lemma

If a circular braid is embedded close to a circle, which
is in turn close to the observation loop γ, then we
have that:

▶ The morse critical points of d(·, γ(t))|M for γ(t)
near the circle split into two clusters, one near
γ(t) and one opposite (on the circle)

▶ For H0 (in extended persistence) the all the
critical points near γ(t) correspond to births and
all the points far away correspond to deaths. (For
Hℓ things are more complicated.)



Equivalent embeddings



Observations

▶ The elder rule of persistence says that the first birth
and final death are paired in each component of B

▶ The additional crossing/strand was introduced to
account for this

▶ For each component of B there will be an unlinked
strand which will become a loose circle in the closed
braid vineyard (in extended persistence, in regular
persistence this lies at infinity)



Observations

▶ The remaining vines have annular
coordinates
(θ, ρ, h) = (θ,R − bj ,DJ′ − 2R)

▶ Then apart from around the crossings
each vine has a distinct ρ value in
which case the h value is not
important

▶ We need to tinker with the death
values at the crossings...



Why we needed the twist...

The twist makes sure that we can deform the braid, in
such a way that it only influences either the birth or the
death times.



Construction

Step 5:

▶ Recall that all crossings are equally spaced
and their death values occur at the
opposite point in the braid

▶ Therefore we can “push” and “pull” the
strands corresponding to the crossing in
the opposite region the recreate the correct
over/under crossing of vines in the vineyard



How to push/pull

The way you want to push/pull can be ‘read off’ from
the equivalent embedding. In the example: If D I is
higher than D III then the cycle born at b2 passes over
the cycle born at b3 in the vineyard if we interchange
the order of birth of b2 and b3.



The construction Vineyard corresponding to the dark blue
region of the observation curve



Extending to l-persistence in Rd

▶ Let M be the (l − 1)-dimensional α-offset of B × 0 in R3
⊕

Rl−1 ≃ Rd

▶ Vines in each l-vineyard closely follow the vines of the 0-vineyard





Conclusion

▶ Vineyards of the radial distance function can be as topologically rich as possible
▶ This reinforces the work of [Onus et al., 2024]

▶ The radial distance transform is topologically richer than the standard persistent
homology transform

▶ It would be nice to define distances between closed vineyards that completely
respect topology
▶ This will necessarily involve knot recognition which is very difficult!
▶ Are there combinations of existing distance and link invariants that can be computed

efficiently?

▶ Do non trivial knots and links appear in real periodic data?



Questions?
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